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ABSTRACT

Revenue management is at the core of airline operations today; proprietary algo-

rithms and heuristics are used to determine prices and availability of tickets on an

almost-continuous basis. While initial developments in revenue management were mo-

tivated by industry practice, later developments overcoming fundamental omissions

from earlier models show significant improvement, despite their focus on relatively

esoteric aspects of the problem, and have limited potential for practical use due to

computational requirements. This dissertation attempts to address various modeling

and computational issues, introducing realistic choice-based demand revenue man-

agement models. In particular, this work introduces two optimization formulations

alongside a choice-based demand modeling framework, improving on the methods

that choice-based revenue management literature has created to date, by providing

sensible models for airline implementation.

The first model offers an alternative formulation to the traditional choice-based

revenue management problem presented in the literature, and provides substantial

gains in expected revenue while limiting the problems computational complexity.

Making assumptions on passenger demand, the Choice-based Mixed Integer Pro-

gram (CMIP) provides a significantly more compact formulation when compared to

other choice-based revenue management models, and consistently outperforms previ-

ous models.

Despite the prevalence of choice-based revenue management models in literature,

the assumptions made on purchasing behavior inhibit researchers to create models

that properly reflect passenger sensitivities to various ticket attributes, such as price,

number of stops, and flexibility options. This dissertation introduces a general frame-

work for airline choice-based demand modeling that takes into account various ticket

attributes in addition to price, providing a framework for revenue management mod-
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els to relate airline companies product design strategies to the practice of revenue

management through decisions on ticket availability and price.

Finally, this dissertation introduces a mixed integer non-linear programming for-

mulation for airline revenue management that accommodates the possibility of simul-

taneously setting prices and availabilities on a network. Traditional revenue man-

agement models primarily focus on availability, only, forcing secondary models to

optimize prices. The Price-dynamic Choice-based Mixed Integer Program (PCMIP)

eliminates this two-step process, aligning passenger purchase behavior with revenue

management policies, and is shown to outperform previously developed models, pro-

viding a new frontier of research in airline revenue management.
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Chapter 1

INTRODUCTION

Since the deregulation of the airline industry in 1978 airline carriers have had the

opportunity to control more aspects of their business. These decisions have become

more difficult as networks connections grow and technology expands with a goal of

providing a fully interconnected network of flights allowing passengers to fly virtually

anywhere in the world. The introduction of more advanced decision making mod-

els and supportive technology has assisted the airline industry with their expansion,

generating a necessity to optimally solve the decisions related to their operations.

Some of these decisions include airport selection, fleet requirements, pricing struc-

tures, collective agreements with other carriers, and allocation of space on a plane.

Although carriers have been solving these problems for decades with heuristics and

assumption-filled models, advances in technology allow for modeling approaches that

can improve the current methods and better represent the behavior airline demand

typically follows.

The two most important decisions an airline makes day-to-day are centered around

the pricing structure and ticket availability for customer purchase. The ticket price

and consumption of space when tickets are purchased have some of the largest impacts

on revenue gains when compared to other revenue earning practices, such as up-sale

opportunities and in-flight options. With the progression of network development, a

need for complex pricing models arose, leading the way to yield management. Yield

management, formally, was the process of estimating and anticipating customer de-

mand, utilizing these estimates to price tickets appropriately, assuming certain fixed

costs were in place. Over the years, yield management evolved into the more common

1
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term used today: revenue management. Revenue management is at the core of airline

operations today; expensive software is utilized and proprietary algorithms alongside

heuristics are implemented to solve these difficult problems. In more advanced carri-

ers, revenue management is incorporated into many decisions including fleet and crew

assignment, emphasizing the importance of having a well-rounded revenue manage-

ment solution methodology.

1.1 Revenue Management

1.1.1 Revenue Management Framework

There is a fundamental framework that exists among the literature concerning

revenue management in the airline industry. We assume a network exists, consisting

of origins and destinations, with no variable costs of flying in or out of an origin or

destination. This assumption lets us optimize expected revenue rather than profit;

the costs of including an origin or destination into the network have been handled,

as well as the operational costs associated with flying. Between every origin and

destination is a leg in which a plane has already been assigned, implying the capacity

of the plane is known prior to solving a problem. Under these assumptions, we have a

capacitated network containing multiple legs with no cost implications. There may be

multiple paths between each origin and destination which consume space on multiple

legs, while each path typically has a value assigned to it known as a fare or price.

The combination of paths, fares, and flight schedule are represented as itineraries,

and are purchased as tickets. As the number of paths and fare options (often referred

to as fare classes) increase, the number of itineraries grows exceptionally fast. This is

a fundamental problem in revenue management as many papers direct their focus on

minimizing the number of itineraries to consider to make it possible for the industry

2
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to solve this combinatorial problem.

The objective of revenue management is to determine the number of seats (allo-

cations) to sell at a particular fare to maximize the network revenue. This can be

done in many ways including protection levels, seat assignments, policy implementa-

tion, ticket availability, or pricing thresholds (often called bid prices). A protection

level is the number of seats which you “reserve” for your higher paying passengers.

For instance, if the expected demand for a higher paying passenger was D1 and the

fare for that passenger was R1, we can continue to accept passengers at a lower fare,

R2, only until the expected value of the higher paying passengers exceeds the lower

fare. Thus, when R2 ≥ R1P (D1 > x) is no longer true for a capacity x, it is ad-

vantageous to reject the lower fare passenger in favor of the probability a higher fare

passenger shows up. Rearranging this equation we can calculate protection levels for

the higher paying passengers as y1 = P−1(R2/R1), which yields the number of seats

we should reserve for only the higher paying passengers. Once protection limits are

reached, lower fare classes are closed and all arrivals requesting the lower fare tickets

are rejected. This series of equations leads to one of the original models developed

for revenue management called Littlewood’s Rule (Littlewood, 2005), and laid the

groundwork for future revenue management models.

Seat assignments are the number of seats the airline is willing to reserve for each

fare class and can be determined from the protection levels, or vice versa. Once seats

in a particular fare class (sometimes called a bucket) are sold out, that fare class is

considered closed. Ideally, once a fare class is closed it is generally not re-opened as

it would net a lower revenue than waiting for a higher paying passenger, but due to

customer behavior there are instances where opening previously closed fare classes

could be advantageous. Seat assignments are nested in fare class, such that allocation

for the higher fare classes contain the sum of the allocations for the lower fare classes

3
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plus their protected seats. As an example, if I had two fares, high and low, and 10

seats on a plane, I would allow the entire plane to be sold at the high fare class.

However, I would lose money if I sold all the tickets to the lower fare class, so I would

put a cap on what they could buy, let’s say 5. This would equate to seat allocations

of 10 for the high fare class and 5 for the low fare class. Converting this to protection

limits, I would have a protection level of 5 for the high fare class since I’m only willing

to sell 5 seats to the lower fare class.

A policy, on the other hand, doesn’t explicitly state how many seats are to be sold

in any given fare class. It states for each itinerary in the system whether it is available

or not. This, in effect, will govern what fare classes are available for purchase at any

point in time. A bid price, on the other hand, is a hurdle rate associated with a given

capacity in the network. This price is generalized to be the marginal value of a single

seat for a leg. If a passenger requests a ticket below the bid price, we stand to make

more money by rejecting him and awaiting a new arrival. If the passenger requests a

ticket at or above the bid price, we will sell the ticket and consume the capacity along

the path selected. Effectively, bid prices determine which fare classes are available by

closing those whose marginal value is below the stated bid price. Implementing a bid

price is similar to that of a policy, as bid prices doesn’t explicitly state which seats

are available for each fare class. Bid prices are often represented as a vector of prices,

one for each leg, where flights with multiple legs are priced according to the sum of

their leg’s bid prices.

The final component of revenue management is the demand aspect. Revenue

management has become more complex over the years, but can be separated into two

categories: Independent Demand and Choice-Based Demand (Dependent Demand).

Independent demand refers to a system where the observed demand does not change

as a function of the options available. For instance, if a passenger was looking to
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book a specific flight at a fare of $250, this passenger, under the independent demand

assumption, would not care that an earlier flight might be available. This assumption

segregates the population into buckets with their requested path, as well as other

ticket attributes, and the fare associated with the path. This was the assumption

used for the majority of revenue management up until recently, when choice-based

modeling of demand became more prevalent. Choice-based demand refers to a system

where the observed demand is dependent on the itineraries and options available.

Given a set of choices, a passenger’s behavior is modeled by a set of probabilities

corresponding to selecting each one of these choices, assuming these choices coincide

with their preferred origin and destination and other ticket attributes. Aside from

the origin and destination, common ticket attributes like time of day, price, number

of stops, and refundability, play an important role in modeling passenger purchasing

behavior. The large number of origin-destination combinations with these ticket

attributes complicate the problem of revenue management greatly, as we now have to

consider what ticket attributes are included in a purchase, and how these attributes

effect our demand estimates. The independent demand assumption ignores the fact

that multiple choices exist and the role these attributes have on purchasing behavior,

whereas choice-based demand can take all of these effects into account.

1.1.2 Independent Demand Models

Revenue management optimization has been around since the early 1970’s. In

one of the first models, Littlewood formulated a single product problem (one leg), in

which he looked to determine the optimal number of seats to protect based on two

fares. He reduced the problem to a classic news vendor problem, in which we choose

to sell the lower fare class ticket only if the expected revenue of the higher fare class

ticket was lower. Applying the news vendor problem results, Littlewood developed an
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equation for generating protection levels, which was later named Littlewood’s Rule

(Littlewood, 2005):

y∗1 = F−1
(

1− R2

R1

)
. (1.1)

As previously discussed regarding protection limits, Littlewood’s rule calculated the

protection levels, y∗1, for the higher fare class based on the fares of the two fare

classes, namely, R1 and R2. This is often referred to as the first revenue management

model, and became the foundation for some of the more popular models. One of

these more popular models was developed by Peter Belobaba (Belobaba, 1989). His

model, the so-called Expected Marginal Seat Revenue (EMSR) model expanded on

Littlewood’s formulation to take into account more than two fare classes. In his

original model, EMSR-a, Belobaba makes comparisons between fare classes that are

adjacent to one another, utilizing Littlewood’s Rule. The model then aggregates

protection levels as you move up the fare classes, to create a set of protection levels

for all available fare classes (Belobaba, 1989). In his secondary model, EMSR-b, the

demand for higher fare classes is included in the calculations for lower fare classes,

as oppose to aggregating protection limits, and an average fare is considered when

adjacent comparisons are being made through Littlewood’s rule (Belobaba, 1992).

The final results of both EMSR-a and EMSR-b were a set of protection levels, or

booking limits, for each fare class on a given leg. Another model that expanded on

Littlewood’s original paper was that of Brumelle et al. (1990). In their model, they

took Littlewood’s formulation and introduced stochastic dependence for the demand

between fare classes. They then examined the full fare spillage (demand that is not

met due to seat limitations) and vertical shifts (the process by which demand shifts

from one fare class to another when their original fare class is not available) from the

lower valued, discount fare classes (Brumelle et al., 1990).

Since the EMSR methodology was simplistic and easy to solve, researchers began
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expanding on Belobaba’s original formulation and adapting it to other slightly more

complicated settings. In Williamson’s PhD dissertation, a method which prorates

revenue across legs in an itinerary containing at least one connection was introduced

(Williamson, 1992). This is an important concept, as revenue is determined by the

itinerary, not the value across each leg of that itinerary. This method allowed seat

allocations and protection limits to be calculated using the EMSR methodologies

while still having a more complex network of flights (Williamson, 1992). Another

model that stemmed from Littlewood’s rule and is very similar to the EMSR methods

was developed by Wollmer (1992). Instead of calculating protection levels, Wollmer

determines the critical value of seats for each fare class. This critical value is analogous

to the booking limitations determined by the EMSR methods.

Around the same time Belobaba was developing EMSR, Glover et al. (1982) devel-

oped one of the first network formulations to solve the RM problem. They modeled

the problem as a seat allocation network flow problem, and proceeded to solve it to

maximize profitability. The system bounds were determined by the demand for a

given leg and the capacity of the plane on that leg (Glover et al., 1982). This model

then led to other more complex models such as multicommodity flow problems (Dror

et al., 1988) and alternate network flow formulations which focused on shadow prices

(Simpson, 1989). Shortly after these network formulations began developing, associ-

ated linear programs were being developed to solve the network revenue management

problem. Curry (1990) developed a linear program which utilizes a piece-wise approx-

imation of the marginal seat revenue as an objective function. The model solved for

seat allocations directly and included origins and destinations which could be nested

within each other (Curry, 1990). A linear programming formulation originally inves-

tigated in Smith and Penn (1988) was later analyzed and formally documented by

Talluri and van Ryzin (1999), which became a popular method called the Random-
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ized Linear Program (RLP). In the RLP, a basic seat allocation deterministic linear

program was solved repetitively with randomized demand estimates from a known

distribution of demand. These solutions were then averaged to generate bid prices for

each leg within the system. This method of randomizing the demand generates more

realistic results and more reliable bid prices (Smith and Penn, 1988; Talluri and van

Ryzin, 1999).

Another large movement in revenue management came from American Airlines.

Smith et al. (1992) describes the optimization process they created for American

Airlines. This process, called Dynamic Inventory and Maintenance Optimizer (DI-

NAMO), was a segregated approach to solving many problems in their airline. DI-

NAMO split up the decisions to be made into three distinct sets: overbooking, dis-

count allocations, and traffic management. Using the optimal solutions of these indi-

vidual problems, DINAMO then found the optimal seat allocations for the network

(Smith et al., 1992). Other models took a different approach and focused on optimal

pricing policies to solve the RM problem. These pricing models varied, such as models

that determine optimal prices to offer products for (Gallego and van Ryzin, 1997),

models that select the duration of offering a known pricing point (Feng and Xiao,

2000b,a), and models that dictate when the price of a product should change (Feng

and Gallego, 2000). Jacobs et al. (2010) considered the relationship between pricing,

revenue management controls, and the scheduled capacity to create a statistic for eval-

uating the quality of an airline’s strategy called the “price balance statistic”, as well

as an algorithm to optimize the relationship between these decisions. Overall, these

models were different in how they solved the problem since they didn’t determine

actual allocations, only pricing policies. In addition to these pricing models, stochas-

tic formulations (Moller et al., 2007; Topaloglu, 2008; Erdelyi and Topaloglu, 2008;

Chen and de Mello, 2010b), relaxation methods (Kunnumkal and Topaloglu, 2010a;
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Topaloglu, 2009), and simulation models (Klein, 2007; Gosavi et al., 2007; van Ryzin

and Vulcano, 2008b) were also developed to handle the network revenue management

problem. In addition to these optimization models, earlier revenue management lit-

erature began focusing on dynamic programming (DP) formulations (Lee and Hersh,

1993; Gallego and van Ryzin, 1994; Subramanian et al., 1999; Liang, 1999; Lauten-

bacher and S. Stidham, 1999). These DP formulations would be the building blocks

of more complicated methods, leading up to some of the key revenue management

models we see today.

1.1.3 Choice-based Demand Models

As network formulations became more advanced, there was a growing need to

better estimate the demand over the network. Independent demand assumptions

failed to take into account the true purchasing behavior of passengers, resulting in

sub-optimal decisions from revenue management models. Eventually, choice-based

models made their way into revenue management, expanding on the ideas from the

last two decades to create more advanced models that yield better pricing and ticket

availability policies. These choice-based demand models, though, come at a cost of

computational complexity and can be difficult to implement into current systems.

Incorporation of passenger purchasing behavior based on ticket attributes and avail-

ability created complex demand models, requiring new revenue management models

for utilizing this type of demand modeling.

One of the first papers incorporating choice-based demand models into revenue

management was that of Gallego et al. (2004). In their paper, they developed a

linear program that solved the network revenue management problem with a general

discrete choice model. Their model took into account the probability that purchases

were made over a set of disjoint options, and then optimized how many passengers
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would be allowed on each of the legs within the network (Gallego et al., 2004). This

model would later be called the Choice-Based Deterministic Linear Program (CDLP),

and has become a benchmark model for revenue management solution methodologies.

In the same year, another important model was developed by Talluri and van Ryzin

(2004a). In their paper, they introduced a dynamic program that takes into account a

general choice-based demand model, as well as a solution methodology to combat the

curse of dimensionality common in dynamic programs. Talluri and van Ryzin (2004a)

were the first to develop the concept of efficient sets, which limited the number of

possible solutions to be evaluated. Other formulations utilizing dynamic programs

were developed as well, including Markov decision processes (Zhang and Cooper,

2005, 2006; Secomandi, 2008; Zhang and Adelman, 2009) and solution methodologies

using both dynamic programming formulations and linear programming formulations

in conjunction with one another (Farias and van Roy, 2007; Adelman, 2007).

With these more complex and realistic models being developed, researchers began

evaluating solution methods and altering the formulations themselves to create more

robust and computationally efficient models. Kunnumkal and Topaloglu (2008) made

an alternate version of the CDLP providing better bounds on the problem when policy

decisions were being used. Liu and van Ryzin (2008) redefined the original CDLP

model and developed an iterative approach to applying the bid prices from the CDLP

to solve a leg-level dynamic program. The results of their paper yielded functional

policy decisions that were both time and capacity dependent. Additionally, they

expanded on the notion of efficient sets, applying them to their formulation of the

CDLP. Following the development of the new CDLP, Bront et al. (2009) developed

a column generation algorithm, which efficiently solved the CDLP with non-disjoint

market segments. In their paper, they considered situations where market demand can

overlap, a situataion that can complicate choice probabilities. Their paper outlines
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the details on applying the column generation algorithm, alternate ways to solve

the sub problem, as well as mathematical tractability of their formulation. Talluri

(2011) creates a method for solving the CDLP as well, called the segment-based

deterministic concave-program (SDCP). His method is a relaxation of the CDLP,

and provides looser upper bounds to the original problem. Shortly later, the SDCP

was improved on by Meissner et al. (2013), in which they included constraints on the

product selections to create an extended-SDCP (ESDCP).

Many researchers focused on solving the dynamic programming formulations de-

veloped over the years. Kunnumkal and Topaloglu (2010b) develop a dynamic pro-

gramming decomposition method that solves a single leg DP with revenue estimates

for each leg in an itinerary. These estimates are determined through an optimiza-

tion model that takes into account the probabilistic choice-based demand. In Huang

and Liang (2011), the authors develop their own dynamic programming formulation

that solves for seat control policies. Their solution method for their DP estimates the

value function of revenue for the problem and then solves the DP with a parametrized

function and a sampling methodology. Zhang (2011) developed a new method to

solve Talluri and van Ryzin’s dynamic programming formulation, in which his model

yielded tighter bounds on revenue than the decomposition and CDLP methods origi-

nally explored. Another method developed was that of Kunnumkal (2011), who took

a two step approach where the first step relaxed the flight leg capacity constraints via

Lagrangian relaxation, while the second step solves the problem with perfect informa-

tion, yielding a final solution that determines capacity dependent policies. Meissner

and Strauss (2012b) consider inventory sensitive bid prices, and developed a dynamic

programming approach of their own. Their model estimates the value function of the

Markov decision process and then solves for the bid prices appropriately.

Other models that have been developed under the choice-based assumptions range
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from heuristics to mixed integer programs. van Ryzin and Vulcano (2008a) develop

an optimization model that solves for nested protection levels. Their model assumes

a general choice-based demand model, which separates the choice model from the

optimization problem itself. Their results are computationally efficient, which implies

practical use in the airline industry. Chaneton and Vulcano (2011) convert the choice

model into a continuous demand estimate, in which they develop a sub gradient

algorithm to find the stationary point. Their model allows for partially accepted

itineraries, similar to that of Topaloglu (2009), and yields mixed results over the

CDLP. Chen and de Mello (2010a) develop an optimization model which allows the

customers to work their way up the fare classes. Each customer has a finite probability

of buying up the fare class buckets, creating a demand stream for a set of optimization

problems to solve. Gallego et al. (2011) introduce a generalized attraction model,

and show the relationship between their generalized attraction model and the more

specific independent demand and basic attraction models. Their model was developed

to overcome the complexity of the CDLP resulting in a sales-based linear program

(SBLP) which utilizes the previously introduced general attraction model. Since a

large majority of the research results in optimal bid prices, Meissner and Strauss

(2012a) develop a heuristic that improves on the initial bid prices from any model.

Their method covers general choice models, and shows revenue gains over available

alternatives with a low computational burden.

Meissner and Strauss (2010) also develop a mixed integer program where policy

decisions on restricted fare classes are determined simultaneously with pricing deci-

sions on unrestricted fare classes. This problem formulation looks at networks where

some fares are determined in advance (restricted), and others have a set of available

options (unrestricted). Kunnumkal (2011) develop a two-step method for the choice-

based revenue management problem. The first step of their method solves an MIP
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that selects the best policies, similar to that of the CDLP. The second step then

determines the bid prices based on the policies selected through an LP. This LP can

be randomized, similar to that of the RLP, and provides good solutions compared to

that of the CDLP. Meissner and Strauss (2011) also develop a mixed integer program,

under the assumption that there is weak market segmentation. Their model proves to

be computationally intractable, yet the authors provide solution methods that trade

off run time for computational accuracy.

1.1.4 Other Demand Models

Although independent demand and choice-based demand covers the vast majority

of revenue management literature available, there are other demand models that

have been used to produce solutions. Topaloglu (2009) uses Lagrangian relaxation to

determine bid prices that are dependent on both capacity and time. His model allows

for a single leg to be accepted out of a multi-leg itinerary, and then decomposes the

problem into a leg-level heuristic. He argues this makes it computationally tractable,

since the size of the problem is not constrained by the complexity of the network.

Dynamic programming decomposition methods also exist for other demand models,

including ones that solve for both overbooking and seat allocations (Erdelyi and

Topaloglu, 2010), as well as pricing decisions where demand is dependent on the prices

being offered (Erdelyi and Topaloglu, 2011). In Song et al. (2010), the authors build

a mixed integer linear program to solve the network revenue management problem.

Their model uses a stochastic estimation of demand through a linear approximation.

A step function is used to estimate the demand, which then allows them to evaluate

revenue as a uniform distribution. They found their MILP generated upper and

lower bounds on the original randomized linear program (Song et al., 2010). Another

model, created by Perakis and Roels (2010), uses the decision criterion of maximin
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and minimax. They consider multiple control sets such as partitioned booking limits,

nested booking limits, and fixed bid prices, and then generate an optimal solution

based on the maximin and minimax criteria.

1.2 Contributions of this Dissertation

As airline revenue management has advanced from independent demand models

into more realistic dependent demand models, a gap has developed between aca-

demic research and industry implementation. Models found in the literature focus

on minimizing assumptions and properly modeling demand, while industry practice

is relegated to sub-optimal models due to airline network complexity, lack of ability

to change the methods by which they estimate demand, or lack of pragmatic solu-

tions. The goal of this dissertation is to reduce this gap, and introduce alternative

formulations that are both implementable for airline use and can progress airline RM

research into the next frontier.

My first contribution in this dissertation is a mathematical formulation for network

revenue management utilizing a MNL demand model. The formulation is substan-

tially less complex than traditional dependent demand RM models in the literature,

and consistently outperforms current industry practice. With numerous examples,

I show the flexibility of the formulation while highlighting the considerable gains in

computational complexity, eventually solving a large network example that is virtu-

ally unsolvable by one of academic literature’s best performing models in a reason-

able amount of time. The reduction of complexity paired with the performance of

the formulation provides an applicable model for airline implementation as well as a

foundation to build upon for future revenue management research.

My next contribution is centered around the MNL demand model framework

and proper implementation for airline revenue management. Traditional dependent
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demand revenue management models utilize static assumptions on pricing and ticket

preferences, creating demand estimates that are independent of revenue management

controls, despite changes in price and ticket attributes directly influenced by these

controls. I introduce an MNL framework for network RM that incorporates passenger

sensitivities to price and other important ticket attributes, creating a demand model

that properly responds to revenue management controls while addressing passenger

purchasing behavior. The framework is easily implemented as there are tools for

fitting these models based on sales data, resulting in demand estimates that reflect

true passenger behavior without assuming static prices or ticket attributes.

The final contribution in this dissertation incorporates the previous framework

into a choice-based mixed integer non-linear programming formulation for airline rev-

enue management. Building upon the complexity gains from the first formulation and

the dynamic nature of demand from the framework, I introduce a model that max-

imizes expected revenue by adjusting ticket availability and prices, simultaneously.

Different from other revenue management models, my second formulation can adjust

prices while accommodating changes in demand, and set ticket availability based on

different ticket attributes commonly seen in the airline industry. The flexibility of this

formulation leads to gains in expected revenue when compared to the first model, as

well as a post-RM pricing method. Despite the non-linear nature of this formulation,

the complexity gains and ease of solving this formulation make it possible for indus-

try implemented, as shown by large examples based on the Southwest Airlines ticket

model.

1.3 Dissertation Organization

The remainder of this dissertation is organized as follows. In Chapter 2, I in-

troduce a mixed integer programming model that incorporates choice-based demand,
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and compare it against the popular models in revenue management literature and

practice. The contents of this chapter was published in October 2014 in the Jour-

nal of Revenue and Pricing Management (doi:10.1057/rpm.2014.17), and has been

reproduced for my dissertation. Chapter 3 builds upon observations from Chap-

ter 2, focusing on formally defining the multinomial logit choice demand framework

for airline revenue management, integrating ticket attributes and price for passenger

preference. The framework lays the groundwork for airline specific demand models,

taking into account each airline’s ticket definitions and display structure to generate

unique passenger preference utilities. Chapter 4 utilizes the previous revenue man-

agement framework and builds upon Chapter 2’s mixed integer program to introduce

a price-dynamic choice-based mixed integer non-linear programming model for airline

revenue management. The price-dynamic model is able to simultaneously solve for

ticket availability and price, showing considerable gains versus other revenue manage-

ment models. Chapter 5 closes the dissertation, highlighting the results from previous

chapters and indicating a direction the field of revenue management can progress with

these contributions.
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Chapter 2

A CHOICE-BASED MIXED INTEGER PROGRAMMING FORMULATION FOR

THE NETWORK REVENUE PROBLEM

2.1 Introduction

From its inception, airlines have used Revenue Management (RM) techniques to

improve their revenue performance or yield by optimizing the passenger mix through

fare class seat availability or bid price hurdle rates. Both leg-based and Origin-

Destination (O&D)-based approaches have used a common assumption that the pas-

senger demand associated with a given flight or O&D path and fare class are known

and forecast independent of other options within the market. For example, demand

forecasts for full fare passengers on BOS-PHX-LAX are based on historical traffic

observations on that specific path and do not explicitly account for the passenger

demand associated with other paths in the market like BOS-ORD-LAX. In addition,

most RM approaches used in practice today assume that fare classes are mutually

exclusive of one another when optimizing seat allocations or bid prices.

These assumptions preclude the demand interactions between different routes,

fare classes and competition from other carriers in the same markets, and limit the

quality of the optimization results and controls. To remove the limitations of these

assumptions, the demand forecasts and optimization must consider the interactions

between the different fare classes and routes available to potential passengers at the

point of sale.

In this chapter, we propose a mixed integer programming formulation that explic-

itly incorporates the fare class and routing interactions using a MultiNomial Logit
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(MNL) choice model. This formulation, which we refer to as the Choice-based Mixed

Integer Program (CMIP), represents an alternative formulation to the Choice-based

Deterministic Linear Program (CDLP), as proposed by Liu and van Ryzin (2008).

The fundamental difference between the two formulations is that the one proposed

here considers individual market strategies as variable options rather than network

level strategies. CMIP shows similar revenue performance to the CDLP while enjoy-

ing significant reductions in the number of decision variables, which is shown to result

in significant computational advantages in the problem instances that we have tested.

CMIP is also shown to yield improvements over popular leg-based EMSR models and

O&D network-based models covered by the literature and used in practice.

The remainder of this chapter is organized as follows. Section 2.2 reviews the

recent literature and developments associated with incorporating passenger choice

into the RM process, Section 2.3 presents the CMIP formulation, Section 2.4 solves

an illustrative example and compares performance to other models, Section 2.5 solves

larger examples and compares performance, and Section 2.6 highlights the conclusions

and potential future research directions.

2.2 Literature Review

Although many RM models have been developed over the past 30 years, the

following literature review focuses on the choice-based demand approaches that aim

to model consumer behavior more accurately for the network RM problem.

To provide a framework for choice-based modeling, we first present an overview

of some of the leg-and O&D-based methods available. Two leg-based independent

demand methods worth noting, however, are that of Littlewood’s 1972 paper (which

was later republished in 2005), and Belobaba (1989). Often, Littlewood (2005) is cited

as being one of the first models to solve the RM problem. His model determined
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the necessary protection limits by comparing two products’ expected demand and

fares. Littlewood (2005) proposed a rule, termed Littlewood’s Rule, which determines

protection levels for the higher fare classes. Belobaba (1989) expanded on Littlewood’s

research, and created the Expected Marginal Seat Revenue (EMSR) model. His first

model, EMSR-a, executed pair-wise comparisons to determine how many seats to

reserve for higher fare classes. The EMSR-a model could compare any number of

pairs, and would aggregate protection levels as it moved up the fare class buckets

(Belobaba, 1989). Later, Belobaba expanded on his own model, creating the EMSR-

b methodology. EMSR-b, instead of aggregating over protection levels, aggregates

the demand for higher paying passengers, and calculates a weighted fare for them

(Belobaba, 1992). This weighted fare is then used for a comparison, and protection

levels are calculated. For a more complete history of independent demand RM models,

we refer the reader to Weatherford and Ratliff (2010). These independent demand

models, like that of Littlewood (2005) and Belobaba (1989), were computationally

efficient, but they lack the network interactions and competitive effects present in

today’s complex airline markets. To this end, research moved towards choice-based

modeling techniques for solving the network RM problem.

Two of the first, and possibly most influential, papers in choice-based modeling

for network RM were Gallego et al. (2004), and Talluri and van Ryzin (2004a). In

Gallego et al. (2004), the authors propose a linear program that solves the network

RM problem with a general discrete choice model. Using the probability of a purchase

as a parameter, the model determines the amount of a time that each set of policies,

defined by the itinerary and fare, is to be offered. This method maximizes the revenue

across the entire network, by selecting a subset of available policies, constrained by

the available space consumed on a leg (Gallego et al., 2004). This model is later

developed into the Choice-based Deterministic Linear Program (CDLP), and has
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become a benchmark for the testing of newer models in the field of network RM.

In particular, the CDLP determines the optimal amount of time to offer a set of

policies, S. This set S is comprised of open and closed policies for each O&D fare

class combination within the network.

Talluri and van Ryzin (2004a) formulated the problem as a dynamic program,

which modeled the probabilities of different purchases using a general discrete choice

model, and determined which policy sets to offer based on the available capacity,

similar to the model in Gallego et al. (2004). Talluri and van Ryzin introduced the

concept of efficient sets, which allowed for search techniques to manage the complex

nature of the solution space. From this point on, research in choice-based RM has

gone in one of three directions: solution methodologies for the CDLP, approaches to

solve dynamic programming formulations, or formulations that are new altogether.

2.2.1 CDLP Solution Methodologies

In Kunnumkal and Topaloglu (2008), the authors created an alternative form

of the CDLP, and obtained better results through the solution of the primal. Liu

and van Ryzin (2008) expanded on the original CDLP, and developed an iterative

approach by applying the bid prices generated from the CDLP to a leg-level decom-

position approach to Talluri and van Ryzin (2004a)’s dynamic program. The results

of their method provided capacity and time-dependent bid prices, which are useful

for industry application. The authors also expanded on the notion of efficient sets,

and applied them to the CDLP, generating methods for solving this complex problem

(Liu and van Ryzin, 2008). Shortly thereafter, Bront et al. (2009) developed a column

generation algorithm to solve the CDLP, in the special case of having non-disjoint

markets. Their model considered situations where market demand can overlap, and

competition can arise between O&D’s as well as pricing options. The authors provide
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details on how to solve the column generation algorithm for the CDLP, as well as

provide two methods for solving the subproblem of determining which set to intro-

duce into the reduced primal problem (Bront et al., 2009). Talluri (2011) relaxed the

CDLP, and solved a Segment-based Deterministic Concave-Program (SDCP), which

provided looser upper bounds to the original problem. Following this relaxation,

Meissner et al. (2013) expanded on the model to include constraints on the product

selections, creating the extended-SDCP.

2.2.2 Approaches to Solve Dynamic Programming Formulations

Although Talluri and van Ryzin (2004a) provided one of the first models utiliz-

ing dynamic programming formulations for network RM, others also explored this

approach. Zhang and Cooper (2005) offered a different perspective, and created a

Markov Decision Process (MDP) formulation for cases where multiple flights are be-

ing offered between O&D’s in short time spans. Later, Zhang and Cooper (2006)

developed an MDP model that allowed for substitution to take place between flights.

Although both of these MDP formulations could be solved via dynamic program-

ming, more efficient methods were found in the form of inventory-pooling (Zhang

and Cooper (2005)) and heuristics (Zhang and Cooper (2006)). Some models were

developed in conjunction with dynamic programs, like in Farias and van Roy (2007)

and Adelman (2007). In Farias and van Roy (2007), the authors model the network

RM problem as a dynamic program, and then solve it with a linear programming

approximation. Their model is unique, as it solves for the bid prices directly, rather

than producing policy-based decisions. Adelman (2007) utilized an affine approxima-

tion for the value function of his dynamic program. Similar to Farias and van Roy

(2007), his model determines the bid prices for the network, and generates a dynamic

set of bid prices. Kunnumkal and Topaloglu (2010b) developed their own dynamic
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programming decomposition method, which solves the single-leg decomposition with

revenue estimates for each leg in an itinerary. The revenue estimates were generated

ahead of time through an optimization model utilizing the choice-based modeling

schema.

Some models shift the focus from policy decisions and generate solutions that

determine seat allocation policies. Huang and Liang (2011) developed a dynamic

programming formulation, which they solve by estimating the value function of the

dynamic program (DP) with a sampling technique. Their model solves for the seat

control policies, rather than open or closed fare class decisions. In Zhang (2011), the

authors proposed an alternative way to solve the dynamic programming formulation

of Talluri and van Ryzin (2004a), and provided better bounds on the optimal solution

for the original problem. Kunnumkal (2011) took a different approach to solving the

dynamic program, and offered two approximation models for solving the choice-based

network RM. Lagrangian relaxations were done for both methods, one based on re-

laxing the flight leg capacities and the other based on perfect demand information.

His model generates capacity-dependent policies, similar to that of the original dy-

namic programming formulation (Kunnumkal, 2011). Another unique formulation is

found in Meissner and Strauss (2012b), in which they develop a dynamic program-

ming formulation that takes into account inventory sensitive bid prices. Their model

estimates the value function of an MDP to determine capacity-dependent bid prices.

2.2.3 Alternative Formulations

Other models different from the typical dynamic programming formulations and

CDLP were also developed. van Ryzin and Vulcano (2008a) developed an optimiza-

tion model that solves the choice model independently from the optimization model

itself, creating an easier and quicker solution methodology to the problem. Their
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model solves for nested protection levels, rather than policy or bid price optimization.

Chaneton and Vulcano (2011) sought to simplify the problem by changing the formu-

lation of the choice-based demand models. They estimate the choice-based demand

by applying a linear approximation to the demand, creating a continuous function

with a stationary point found using a sub-gradient algorithm. Their model allows for

partially accepted itineraries in which the passenger requests can be accepted on legs

within the itinerary, but not the entire itinerary itself (Chaneton and Vulcano, 2011).

This approach is similar to that of Topaloglu (2009), in which a bid price solution

methodology is developed by applying a leg-level decomposition approach. Chen and

de Mello (2010a) developed a formulation that modeled the buy-up behavior directly.

Their model allows for passengers to step up in fare classes if their desired fare class is

unavailable. From this buy up pattern, the authors were able to determine a demand

stream, which then was used to solve a set of optimization problems.

Gallego et al. (2011) introduced the generalized attraction model, which can be

applied to any demand input. The independent demand, as well as basic attraction

models, were found to be special cases of this generalized attraction model. They

develop their model to combat the complexity of the CDLP, resulting in a new for-

mulation known as the Sales Based Linear Program (SBLP). Another mathematical

model, in the form of a mixed integer program, was developed by Meissner and Strauss

(2010). Their model solved for both policy decisions on restricted fare classes (i.e., fare

classes in which discrete fares are determined in advance), as well as pricing decisions

on unrestricted fare classes (i.e., fare classes in which a continuous range of available

prices exist). Kunnumkal (2011) developed a two-step method for solving the net-

work RM problem. His method first determines which policies are optimal through

a choice-based mixed integer program, followed by a linear program that determines

the marginal value of seats. He argues that the linear program can be randomized,
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and provides good solutions compared to those obtained by the CDLP (Kunnumkal,

2011). Meissner and Strauss (2011) also developed a mixed integer program, under

the assumption that market segmentation is weak. This creates ambiguity in the de-

mand stream, and their model proved to be computationally intractable. The authors

provided alternative solution methods for solving their mixed integer program, citing

cases where shorter run times were more advantageous than computational accuracy.

In the following section, we present a new formulation that improves on the research

reviewed here.

2.3 Mathematical Model

We consider a network with legs l ∈ L, and containing multiple markets defined by

set J . A market j represents an O&D pair. There exists a set of policies, Ij, defined

for each market j ∈ J , where a policy i ∈ Ij is defined as a pair of itinerary and

fare class assignments. Since each market can have multiple itineraries (i.e., paths)

and fare classes, we define the set Kji that contains all defined fare class-itinerary

pairs for market j ∈ J and policy i ∈ Ij. The planning horizon associated with this

model can be viewed as the time to departure. We discretize time into periods and

denote the index set of time periods by T . Having defined the network parameters,

the parameters and decision variables for our mathematical formulation are formally

defined in Table 2.1.

As an example, consider the network given in Figure 1, which is the same example

used in Bront et al. (2009) and Liu and van Ryzin (2008). The network contains

three nodes and leg capacities of 10, 5 and 5 seats for legs 1, 2, and 3, respectively.

Each leg represents a single flight, thus there are no parallel flights for this network.

Table 2.2 includes further data on this example; eight products were defined by what

the authors refer to as “O&D path” and fare class combinations.

24



www.manaraa.com

λt Number of customer requests for flights to the network in period t, t ∈ T

Pj Probability of an arrival for market j, j ∈ J

Sji Probability that a purchase is made for market j under policy i ∈ Ij

Pk|j,i Probability of a purchase on fare class-itinerary k ∈ Kji,

given purchase is made for market j under policy i ∈ Ij

Rk Revenue for a purchase on fare class-itin. k given policy i is used

Akl Binary parameter representing consumption of leg l for fare class-itin. k ∈ Kji

cl Capacity of leg l ∈ L available at the beginning of the planning horizon

Zjit Fraction of period t demand for market j served under policy i ∈ Ij

Xjit Binary decision variable to use policy i ∈ Ij for market j in period t ∈ T

Table 2.1: Table of Notations Used in CMIP

A

B

C

Leg 2

Figure 2.1: Illustrative Example: Three-leg Network

Table 2.3 includes data on customer preferences and utilities of the different prod-

ucts for each of the five segments. The preference vectors represent the utility that

the products in the consideration set provides for the segment. For example, segment

1 has a consideration set of {1, 5}, and a preference vector of (5, 8). This means that

the first segment has a utility of 5 for product 1 (i.e., the A-C itinerary with a cost

of $1200) and a utility of 8 for product 5 (i.e., the A-C itinerary with a cost of $800).

The larger utility value implies that customer segment 1 prefers the A-C itinerary

with a cost of $800 over the A-C itinerary with a cost of $1200. The no-purchase

utility corresponds to the option of not purchasing either product.

For our formulation, the network illustrated in Figure 1 would result in three mar-

kets, i.e., J = {AB,BC,AC}. Note that market AC contains two different itineraries,
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Origin-Dest.

Product Path Class Fare

1 A - C High $1200

2 A - B - C High $800

3 A - B High $500

4 B - C High $500

5 A - C Low $800

6 A - B - C Low $500

7 A - B Low $300

8 B - C Low $300

Table 2.2: O&D Paths and Fare Classes for the Illustrative Network Example (Liu
and van Ryzin, 2008)

Arrival Consideration Preference Utility of

Segment Rate Set Vector No Purchase

1 0.15 {1, 5} (5, 8) 2

2 0.15 {1, 2} (10, 6) 5

3 0.20 {5, 6} (8, 5) 2

4 0.25 {3, 7} (4, 8) 2

5 0.25 {4, 8} (6, 8) 2

Table 2.3: Data on Demand and Customer Preferences for the Illustrative Network
Example (Liu and van Ryzin, 2008)
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the direct path from A to C as well as the path containing the connection A-B-C.

For each market, j ∈ J , there is a set of available policies, Ij. Each policy lists the

available options, each defined by an itinerary and the fare classes. For instance, the

AC market has two competing paths, AC and ABC, thus the available policies for

the AC market would be all combinations of high and low fare class options, as well

as the possibility of closed itineraries.

When implementing policies in real life airline RM systems, certain fare classes are

nested within their lower fare class counterparts. For instance, the policy containing

AC high and AC low open simultaneously would be equivalent to opening only AC

low, since policy implementation is generally based on bid prices. That is not to

say the higher fare class is closed, just that there is no situation where an airline

would refuse a higher paying passenger just because the policy only defines AC low

as being open. This natural nesting among the fare classes eliminates the need to

separately define policies in which AC high and AC low are open simultaneously. The

elimination of these simultaneous policies, however, removes any buy up potential,

thus the model makes a conservative assumption that buy up is negligible.

Finally, the set Kji includes all fare class-itinerary pairs defined for market j under

policy i ∈ Ij. The first component, market, is defined by the available market set J .

The policy component is defined by the set of available policies Ij. The itinerary path

is determined by the structure of the network itself. The combination of appropriate

market-policy-itinerary path groupings generates the set K, which is referred to as

the fare class-itinerary. For the illustrative example, the values of these sets can be

seen in Table 2.4, in the fourth column.

We can now determine the values of our parameters λt, Pj, Akl, Rk, Pk|j,i and Sji

for the illustrative network example. For this example, we assume that the arrival

rate, or the number of unit demand arrivals per period, stays constant at the values
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listed under the column labeled “Arrival Rate” in Table 2.3 for each customer segment.

We actually use these values for λtPj for each market. From Table 2.3 the arrival rate

for market AC, for example, will be equal to the sum of the arrival rate values listed

for customer segments 1, 2, and 3, i.e., λtPAC = 0.50 customers for each time period.

Similarly, λtPAB = 0.25 and λtPBC = 0.25 for all t ∈ T . Note that in the example,

the time is scaled so that the total arrival rate, λt = 1.

The values of Akl can be determined by examining the network and fare class-

itineraries. If fare class-itinerary k ∈ Kji consumes space (i.e., 1 unit of capacity) on

leg l, then Akl is assigned a value of 1. Otherwise, Akl is assigned a value of zero.

Since Rk represents the revenue earned for fare class-itinerary k being purchased,

those values can be read directly from the pricing table.

The values for Pk|j,i were determined through conditioning. For instance, if the

policy available was AC High/ABC High, then a fraction of the purchases would

purchase the AC itinerary while others would purchase the ABC itinerary. Since we

are conditioning on the fact that a purchase was made, we merely need to determine

what fraction of passengers purchased the AC High option (or, “fare class-itinerary”)

and what fraction of passengers purchased the ABC High option. To do this, we must

first determine which customer segments, as defined by Table 2.3, prefer each of the

options. For the AC High option (defined as product 1), we can see that customer

segments 1 and 2 have utility values for this product (as defined by their consideration

sets). Likewise, for the ABC High option (defined as product 2), we can see that only

customer segment 2 has preference for this product.

We first calculate Sji, which denotes the probability of a purchase by an arriving

market j customer under policy i ∈ Ij. For the above example of policy AC High/ABC

High for the AC market, the probability of purchase by a market AC customer under

policy i ∈ Ij can be calculated as a weighted average of the purchase probabilities
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that can be calculated from the given utilities of the products available under the AC

High/ABC High policy, and that of no purchase. That is,

SAC,AC High/ABC High =
5

5 + 2

(
0.15

0.50

)
+

10 + 6

10 + 5 + 6

(
0.15

0.50

)
+ 0

(
0.20

0.50

)
= 0.443 ,

by using the given utilities and conditioning on the event that the AC customer is

from segment 1, 2 or 3, respectively.

Note that the utility values used above represent the respective eul terms used in

the MNL model. Essentially, the ratio 5/(5 + 2) can be rewritten in traditional MNL

format as e1.609/(e1.609 + e0.693), where the values of 1.609 and 0.639 would represent

the MNL utilities for the AC market for AC High and the no purchase option, re-

spectively. We use this simplified notation for ease of representation, following the

tradition set by previous papers in this area.

Then, the probability that the customer bought fare class-itinerary k, such that

k ∈ KAC,AC High/ABC High given that a purchase was made by an AC customer under

policy AC High/ABC High can be calculated by

PAC High|purchase under AC High/ABC High =
5

5+2

(
0.15
0.50

)
+ 10

10+5+6

(
0.15
0.50

)
0.443

= 0.806 .

Similarly, we can calculate

PABC High|purchase under AC High/ABC High =
6

10+5+6

(
0.15
0.50

)
0.443

= 0.194 ,

or, simply by observing that for this policy with two fare class-itinerary options,

PABC High|purchase under AC High/ABC High = 1− PAC High|purchase under AC High/ABC High .

Continuing similarly, we obtain the values in Table 2.4 for this illustrative example.

Note that in columns one through five, the table provides the markets (i.e., j ∈ J),

the policies defined for each market, (i.e., i ∈ Ij), the purchase probability for market

29



www.manaraa.com

j under each policy i ∈ Ij, (i.e., Sji values), the defined fare class-itineraries (i.e., set

Kji) for each market j under policy i ∈ Ij, and finally, the conditional probability

that the option given by a particular fare class-itinerary j ∈ Kji will be selected,

given that a purchase for market j was made under policy i ∈ Ij.

Finally, our formulation uses the following decision variables. Xjit represents the

binary variable that takes on a value of 1 if the decision is to use policy i for market j

in period t, and Zjit represents the fraction of market j demand served under policy

i in period t. To expand on the variable Zjit, consider an example where, for a

given market policy i and five time periods, Zjit takes on values of (0, 0, 1, 1, 0.172).

This vector would represent the following set of decisions. For time periods 1 and 2,

policy i is not available and no demand for market j would be served under this policy.

During time periods 3 and 4, policy i is available, and any arriving demand for market

j would be served. Finally, during time period 5, policy i is available, but only 17.2%

of the potential demand should be served. Note that the term “served” here does

not necessarily mean that they will be purchasing a ticket; it basically means that

they get to consider the various options available to them for market j, under policy

i ∈ Ij. As a result of this consideration, they may or may not purchase a ticket on

market j. Using these two decisions variables, and the parameters previously defined,

we formulate the Choice-based Mixed Integer Program (CMIP) as follows.
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Fare Class-Itineraries

Market (Set J) Policies (Set Ij) Sji (Set Kji) Pk|ji

AB
AB High 0.667 AB High 1

AB Low 0.857 AB Low 1

BC
BC High 0.750 BC High 1

BC Low 0.875 BC Low 1

AC

AC High/ABC High 0.443
AC High 0.806

ABC High 0.194

AC High/ABC Low 0.761
AC High 0.556

ABC Low 0.444

AC Low/ABC High 0.809
AC Low 0.681

ABC High 0.319

AC Low/ABC Low 0.607
AC Low 0.773

ABC Low 0.227

AC High/ABC Closed 0.414
AC High 1

ABC Closed 0

AC Low/ABC Closed 0.580
AC Low 1

ABC Closed 0

AC Closed/ABC High 0.279
AC Closed 0

ABC High 1

AC Closed/ABC Low 0.347
AC Closed 0

ABC Low 1

Table 2.4: Set Definitions and Calculated Parameters for the Illustrative Example
Adapted from Liu and van Ryzin (2008)
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Maximize
∑
t∈T

∑
j∈J

λtPj
∑
i∈Ij

Zjit Sji
∑

k∈Kji

RkPk|j,i (2.1)

Subject to: ∑
t∈T

∑
j∈J

∑
i∈Ij

∑
k∈Kji

λtPjZjitSjiPk|j,iAkl ≤ cl, for all l ∈ L, (2.2)∑
i∈Ij

Xjit ≤ 1 , for all j ∈ J, t ∈ T, (2.3)

Zjit ≤ Xjit , for all j ∈ J, i ∈ Ij, t ∈ T, (2.4)

Zjit ∈ R+, Xjit ∈ {0, 1}, for all j ∈ J, i ∈ Ij, t ∈ T. (2.5)

The objective function (2.1) represents the total expected revenue across all time

periods for the decision variable Zjit. The objective function can be broken into two

main components: the arrival rate of demand per market and the expected revenue

for a given policy. The first component, the arrival rate of demand per market, is the

product of the expected number of customer requests in period t, (i.e., λt) and the

probability that an arrival demands a ticket for market j, (i.e., Pj). This product,

λtPj, represents the expected number of arrivals in time period t ∈ T for market j.

The second component, the expected revenue obtained from market j under policy

i ∈ Ij, E[Rj(i)], assuming that customer preferences remain unchanged throughout

the planning horizon, can be calculated as follows.

E[Rj(i)] = (1− Sji) 0 + Sji E[Revenue | purchase in market j under policy i ∈ Ij ]

= Sji
∑
k∈Kji

RkPk|j,i , (2.6)

where Rk denotes the revenue from a sale on fare class-itinerary k ∈ Kji, Pk|j,i

denotes the conditional probability of a purchase on fare class-itinerary k ∈ Kji,

given a purchase for market j is made under policy i ∈ Ij, and finally, Sji is the

probability that a purchase for market j is made under policy i ∈ Ij.

Constraint set (2.2) ensures that the capacity constraints on the legs are not

violated. The continuous decision variable, Zjit, allows for the partial accommodation
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of demand, and facilitates the determination of bid price values for the flight leg, l ∈ L.

The purpose of a bid price is to represent the marginal value of an extra seat on a

given leg. In the event constraint set (2.2) is binding, we can increase the capacity of

a leg to determine what impact this increase would have on the objective function.

The value of variable Zjit could be increased a marginal amount, no greater than one,

if the current value is less than one. In the event Zjit was already at a value of one,

then the model could select a different Zjit to improve the objective function. This

would force the constraint to be binding, again, and the objective function, which

also contains the Zjit variable, would increase appropriately. This increase would be

analogous to the shadow price of a linear program, thus it can be used as the marginal

value of a seat on a given leg. The marginal value of a seat is then translated into

the bid price for the leg, and could be used for bid price based control policies.

One difference between our formulation and other formulations stems from the

fact that the other models account for all market combinations in the form of sets,

whereas CMIP combines policies for O&D markets to determine the overall policy

for the network. For instance, the CDLP selects which sets are optimal, while the

CMIP model selects, individually, which O&D fare class combinations optimize our

revenue. Since the CMIP focuses on a market-by-market level, the total number of

variables for the problem is greatly reduced, which results in reasonable solution times

for larger networks, as we show for a large network instance. As mentioned above,

the complexity of the network greatly impedes the quality of the solutions that one

can obtain from the CDLP formulation within a reasonable run time. Hence, having

fewer variables in the CMIP formulation allows for the modeling of larger networks

with solution times that are implementable for industry use.

To illustrate the magnitude of the difference in variables, consider the small net-

work that we considered earlier, depicted in Figure 1. In this network, for a single
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time period, the CMIP has a total of 24 variables and 18 constraints. The CDLP,

for the same scenario, has a total of 255 variables and 4 constraints. As we increase

the number of time periods, the CMIP increases in both variable and constraint to-

tals, while the CDLP does not. The advantage of the CMIP, however, is when the

complexity of the network is increased. Adding just one more node with respective

high and low fare classes and connections (assuming this node is independent of the

markets currently in the network), would only increase the CMIP to 28 variables

and 22 constraints. This same network for the CDLP formulation would have 16,383

variables and 5 constraints. The CDLP has a smaller constraint set, yet the variable

space is exponentially increasing as the complexity of the network is increased. The

CMIP has a much smaller variable space, and a reasonably sized constraint space.

As the complexity of the network is increased, the variable and constraint space does

not increase in an exponential fashion; the total number of variables for the CMIP,

however, would increase multiplicatively for each additional time period.

2.4 Solution of the Illustrative Example

We solved the CDLP and CMIP formulations for the example presented above (see

Figure 1), and implemented the obtained policy decisions in a simulation to compare

the performance of the two approaches. We used AMPL and Gurobi 5.0.1 to build

and solve the formulations. We assumed that buy-up did not happen, as there only

is a very small probability that a passenger will purchase a higher priced ticket if a

lower priced ticket is available.

We programmed the simulation in MATLAB following a traditional Monte Carlo

simulation approach. First, the simulation takes bid prices as the control, and gen-

erates the available fare classes in each time period. We assume a stationary arrival

rate of customers (I.e., λt = λ for every time period t ∈ T ) and generate exponential

34



www.manaraa.com

customer interarrival times with this rate. For each customer, the simulation model

generates the identity of the market that the customer is interested in purchasing, as

well as what, if anything, the customer purchases using Pj, Sji and Pk|ji in a relatively

standard random number generation scheme. In case of a purchase, the capacity of

the legs for the requested itinerary is reduced, and the total revenue is updated. We

ran the simulation for 2000 iterations for each of the network instances tested. This

simulation is used for all of the results following the illustrative example.

The solutions from the two formulations generated similar bid prices across the

majority of the tests. The average total revenue values obtained with the two ap-

proaches were also comparable. As seen from Table 2.5, the CDLP and CMIP reach

identical bid prices in every case except for T = 5 and λ = 5. Due to the nature

of this illustrative example, the leg AC only has pricing options of $800 and $1200.

Hence, having a bid price of $750 implies both pricing options are to be open. Note

that obtaining a bid price of $0 (which can be observed in the case of the CMIP for

T = 5 and λ = 5), would have the same effect as having a bid price of $750. This

implies the CDLP and the CMIP generate identical bid price control strategies across

all combinations for this example.

For the results presented in the last two columns of Table 2.5, the CMIP increased

expected revenue by an average of 2.72% when compared to the CDLP. Although

these models are similar, the way they handle expected traffic is different. The CDLP

uses the direct probability of purchases generated from the MNL choice model. The

CMIP uses the probability of purchases for a given fare class-itinerary, conditioned

on a purchase being made. These differences are subtle, yet impact the CDLP and

CMIP objective functions, so comparison on these values alone is insufficient. To this

end, we simulated the policy for the instance of λ = 5 and T = 5, to see whether

the differences between revenues would continue to hold. This problem instance was
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CMIP Bid Prices CDLP Bid Prices Obj. Fn. Obj. Fn.

λ T AB AC BC AB AC BC CMIP CDLP

1 $0 $0 $0 $0 $0 $0 $515 $497

1 5 $0 $0 $0 $0 $0 $0 $2,577 $2,485

10 $0 $0 $0 $0 $0 $0 $5,155 $4,971

1 $0 $0 $0 $0 $0 $0 $2,577 $2,485

5 5 $0 $0 $500 $0 $750 $500 $10,664 $10,064

10 $300 $1200 $500 $300 $1,200 $500 $13,168 $13,167

1 $0 $0 $0 $0 $0 $0 $5,155 $4,971

10 5 $300 $1,200 $500 $300 $1,200 $500 $13,168 $13,167

10 $500 $1,200 $500 $500 $1,200 $500 $13,500 $13,500

Table 2.5: Results from CMIP and CDLP Formulations

chosen since this was the only case where the bid prices differed between the two

models. We determined the 95% confidence intervals around the expected revenue

for both simulations. The CMIP resulted in an interval of ($6, 959, $10, 071), while

the CDLP resulted in an interval of ($6, 950, $10, 088). As expected, the results we

observed for the CMIP and CDLP were very close to one another. Based on the results

of the simulation, we conclude that, in this set of problem instances, the CDLP and

CMIP provide similar solutions, and can be used interchangeably.

2.4.1 Implementing the Solution

One advantage of the CMIP formulation is the fact that both the policy and bid

price controls are useful for industry application. The solution to the CMIP indicates

which policy should be offered for each market during a particular time period. In the

three-leg network problem instance, the solution would instruct, for instance, to open
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the high fare class for itinerary ABC during time periods 1, 2 and 3. Additionally,

it would indicate to open the low fare class for itinerary AB during time periods 1

and 2, while opening the high fare class for time period 3. A reservation system

could directly interpret this decision to open and close these particular fare classes,

following the guidance of the CMIP solution. The reservation system could then

generate cut offs for certain fare classes and calculate protection levels based on the

airline’s current system, if necessary.

An effective bid price control can be derived from the solution to this formulation

as well. Effectively, the lowest open fare class-itinerary on a leg, at optimality, reflects

the marginal value of that leg. In terms of right-hand side sensitivity, adding an

additional seat to this leg would increase the overall network revenue by the value of

that itinerary as long as the optimal basis of the integer solution does not change.

This marginal value is analogous to a bid price that can be used for inventory control.

Since both the policy and bid price controls from the CMIP are implementable, this

model could be utilized for either reservation system, as well as a reservation system

that utilizes both solutions for pricing and capacity controls.

2.4.2 Comparison to Other Network RM Methods

Two common models currently being used in the industry include a stochastic

network flow formulation and the EMSR-b model, discussed in the literature review.

The network flow formulation represents one approach commonly used and is a pop-

ular O&D RM strategy. The network formulation, as seen in Appendix A of Jacobs

et al. (2008), represents a stochastic passenger flow model, solved using a Lagrangian

relaxation approach with a sub-gradient algorithm. The network flow formulation

solves for the bid prices associated with each leg, and calculates the protection limit

for each fare class on each leg using Littlewood’s Rule.
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The EMSR-b model represents a leg-based control strategy which estimates the

bid prices using protection limits based on Littlewood’s Rule. To account for the

connecting traffic between O&D pairs, the revenue of the connecting fare was prorated

and allocated to each leg in the O&D. The industry uses various versions of the

EMSR-b and network formulation, making these industry models a good technique

to compare against.

The EMSR-b model and the network formulation were solved for multiple passen-

ger demand scenarios. The results show, using simulations of nine combinations of λ

and T , that the CMIP performs better than both models. The CMIP outperforms

the EMSR-b by 11.82% in mean revenue over all of the nine cases given in Table 2.6.

A standard z-test on the difference of each set of means for the results shown in Table

2.6 illustrated that the differences in the expected revenue of all nine combinations

are statistically significant, with p-values less than 0.001.

In some situations the CMIP simulation resulted in larger confidence intervals, but

this is due to the highly segmented nature of fares. The difference between a sale and

no sale is at least $300 (in the case of the lowest fare for legs AB and BC), creating a

large gap between revenues among simulations, yielding large standard deviations in

relation to overall revenue. It is important to note, however, that as a larger amount

of demand enters the network, the width of the confidence intervals for the CMIP

reduces drastically; this is the exact opposite of the EMSR-b simulation, where the

confidence intervals become wider as more demand enters the network.

For the network formulation, the gains were slightly less since the network formu-

lation tends to perform better than the EMSR-b. The expected revenue showed an

average increase of 9.60% over the nine cases presented in Table 2.7. Similar to the

statistical tests of the EMSR-b, these nine cases show that the expected revenues are

significantly different between the CMIP and network formulation, with p-values less
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CMIP EMSR-b % Increase

λ T 95% Confidence Interval 95% Confidence Interval Over Mean

1 ($0, $1,414) ($0, $903) 10.8

1 5 ($228, $4,468) ($1,175, $3,191) 7.0

10 ($1,891, $7,213) ($2,692, $5,430) 10.8

1 ($261, $4,465) ($1,175, $3,191) 7.7

5 5 ($6,959, $10,071) ($3,915, $9,663) 20.3

10 ($10,229, $12,199) ($7,834, $11,488) 13.8

1 ($1,891, $7,221) ($2,692, $5,430) 10.9

10 5 ($10,186, $12,220) ($5,164, $8,818) 13.8

10 ($13,174, $13,772) ($10,069, $13,799) 11.4

Table 2.6: Expected Revenue Confidence Intervals by Bid Pricing Controls Simula-
tion (CMIP vs. EMSR-b)

than 0.001. All three model simulations were run together, yet we chose to display the

ESMR-b and network formulation results separately for easier comparison. Similar to

the EMSR-b, the network formulation uses a segmented demand model for predicting

the expected number of passengers. This causes the network formulation to open up

the lower fare classes earlier than the CMIP does. Since the CMIP keeps the lower

fare classes closed for a longer period of time, a higher overall revenue is earned.

The results show a significant performance difference between the four tested net-

work RM models. Figure 2.2 illustrates the gains by each of the models as one

increases the total number of passengers introduced into the system over the entire

time horizon. At the lowest level of passenger demand, all four models behave sim-

ilarly: they sell to any passenger that shows up. At the highest level of passenger

demand, all the models again behave similarly: only sell to the highest paying pas-
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CMIP Network Formulation % Increase

λ T 95% Confidence Interval 95% Confidence Interval Over Mean

1 ($0, $1,414) ($0, $903) 10.8

1 5 ($228, $4,468) ($1,169, $3,203) 6.9

10 ($1,891, $7,213) ($2,659, $5,521) 10.2

1 ($261, $4,465) ($1,169, $3,203) 7.5

5 5 ($6,959, $10,071) ($3,949, $9,971) 19.3

10 ($10,229, $12,199) ($8,771, $12,517) 5.1

1 ($1,891, $7,221) ($2,659, $5,521) 10.2

10 5 ($10,186, $12,220) ($8,791, $12,537) 5.0

10 ($13,174, $13,772) ($10,069, $13,799) 11.4

Table 2.7: Expected Revenue Confidence Intervals by Bid Pricing Controls Simula-
tion (CMIP vs. Network Formulation)

sengers. However, as one moves from zero demand to a higher demand, the models

begin to deviate from one another. The two dominating curves, the CMIP and CDLP,

produces higher revenues compared to the EMSR-b and the network formulation. In

fact, as seen in Figure 2.2, the CMIP and CDLP perform quite similarly.

2.5 Additional Examples

2.5.1 Small Network Instance

In addition to running the model on the three leg network seen above, we also

tested it on another network given in Liu and van Ryzin (2008). This network,

depicted in Figure 2.3, is a small 22 product network, consisting of 7 legs.

The network contains a direct flight from A to B, with competition from A to B

through the hub, H. There are two flights from each of the direct legs between A, H,
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Figure 2.3: Small Network Instance - Adapted from Liu and van Ryzin (2008)

B, and C: an early flight and a later flight. The network instance data, including all

of the MNL choice parameters, can be found in Tables A.1 and A.2 in the Appendix

for the reader’s convenience. The small network instance was ran for 1,000 time

periods, with λt equal to 0.91 for each time period. This would represent a total of

910 customers introduced into the network.

We ran our model, and compared the results to those given in Bront et al. (2009)

for the example in Liu and van Ryzin (2008), and saw that our model performed

similarly to the CDLP. Across the five tests, each for a different fraction of total
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network capacity, our model performed 9.0% better, on average, than the CDLP,

while still maintaining similar levels of network Load Factor (LF). The LF, defined

as the average across all legs of the ratio of seats taken to total capacity, represents

how many seats, on average, are consumed across the entire network. In addition

to comparing it to the CDLP, we also compared it to the model solved using the

independent demand assumption (referred to as the INDEP model) found in Bront

et al. (2009), in which a deterministic linear program is solved with demand values

generated under the assumption that all of the products are simultaneously open.

The first column of Table 2.8 indicates the percentage of the base capacity used for

both the model solution as well as the simulation. This value represents an increase

or decrease in the amount of capacity available, while maintaining the demand over

the time horizon. The table includes the expected revenues obtained by the CDLP

and CMIP solutions, as well as the percent increase they offer over the INDEP model.

The table entries for CDLP and INDEP come from the simulation results reported

in Bront et al. (2009). As the capacity in the network increases, the network load

factor should decrease, as the demand introduced into the network does not increase,

although the available space does. As seen in Table 2.8, the load factors decrease as

the amount of capacity increases for all of the models, as expected.

Percent of CMIP CDLP INDEP

Base Cap. Rev. Inc. (%) LF (%) Rev. Inc. (%) LF (%) Rev. LF (%)

60 $224,114 30.0 98.5 $207,890 20.6 91.3 $172,362 97.7

80 $278,241 36.0 92.1 $261,264 27.7 85.6 $204,572 94.6

100 $297,752 31.7 83.6 $277,738 22.9 80.8 $226,002 87.7

120 $315,832 29.5 77.0 $282,842 16.0 71.6 $243,930 82.5

140 $318,153 22.8 70.2 $285,417 10.2 62.0 $259,039 77.0

Table 2.8: Expected Revenues and Percent Increase Over INDEP (Small Network
Instance)
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2.5.2 Large Network Instance

We finally use a large network instance with realistic aspects to further test the

performance of the CMIP. The network structure, as well as the revenue values asso-

ciated with each itinerary can be found in Jacobs et al. (2008). This network contains

48 legs, each with an initial capacity of 200 seats, joining 10 cities (see Figure 2.4).

Each leg represents a single flight. There are no parallel flights available in this net-

work. There are 178 itineraries, with three fare classes each, denoted as Y, M, and Q,

for the given itinerary. There are a total of 90 O&D markets, with markets containing

either one, two, or three possible paths between O&D. For a single time period, the

CMIP model has a total of 3,598 variables. Note that for this example, the CDLP

would result in a total of 2534− 1 (or, about 5.6E160) variables. The total number of

arrivals to the system was set to 9,750 for a single time period. A single time period

was used to see a representation of a solution for an entire booking horizon. The

MNL values associated with each choice were arbitrarily generated, as well as the

individual arrival probabilities per market. These values can be found in three tables

(Tables A.3, A.4, and A.5) given in the Appendix, and are separated by how many

competing itineraries existed between O&D, for easier classification. The preference

vectors in Table A.3 represent the utility of the three fare classes, Y, M, and Q. The

preference vectors in Table A.4 represent the utility of the three fare classes for each

of the two itineraries available for that market. The first three utility values refer to

the Y, M, and Q fare classes of the first itinerary, while the last three utility values

refer to the Y, M, and Q fare classes of the second itinerary. Similarly, Table A.5

displays the preference vectors for the three itineraries with respect to the Y, M, and

Q fare classes.

As indicated by the results given in Table 2.9, the time required to solve this

43



www.manaraa.com

Figure 2.4: Large Network Instance, Adapted from Jacobs et al. (2008)

model is quite reasonable. As the capacity becomes more constraining, the model

needs more time to find an optimal solution. However, it can still be solved in a

reasonable amount of time. Since the CDLP is expected to have a total of 5.6E120

variables, we did not program the decomposition approach presented in Bront et al.

(2009), as it would have proved to be computationally prohibitive.

In addition to the revenue and network LF, the available seat mile (ASM) and

revenue per available seat mile (RASM) are also reported. The ASM is calculated

by the number of seats available on a leg, multiplied by the distance traveled by the

flight on that leg, then summed for all flight legs. The RASM is the total expected

revenue divided by the ASM. This value is often used in the industry, and although

the values seen in the table come from a fabricated instance, the RASMs are in-line

with what is seen in industry practice.

2.5.3 Computational Complexity

Many of the existing RM approaches, such as the dynamic program proposed

in Talluri and van Ryzin (2004a) generate an exponential number of solutions by
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Percent of CMIP

Base Capacity Revenue LF (%) ASM RASM Elapsed Time (sec.)

60 $1,018,043 82.2 6,380,160 $0.16 142.87

80 $1,146,655 78.5 8,506,880 $0.13 66.04

100 $1,231,055 70.6 10,633,600 $0.12 3.07

120 $1,283,682 62.6 12,760,320 $0.10 3.65

140 $1,322,589 55.2 14,887,040 $0.09 1.59

Table 2.9: Expected Values for the Large Network Instance

explicitly combining market policy strategies together across the network. This is

problematic for industry use, as networks and fare class buckets have grown to create

many itineraries. One example of this complexity issue is apparent in the CDLP’s so-

lution set, S. Since set S contains all the fare class and O&D controls for the network,

S is dependent on the network definition, including prices and control strategies. For

example, a small three node, four itinerary, two fare class network yields 255 decision

variables for the CDLP formulation. However, if we increase the complexity of the

network to four nodes, seven itineraries, and keep the two fare classes, the model has

a total of 16,383 decision variables. This number continues to grow exponentially

when any parameter of the network is increased, which can be seen in Table 2.10.

This table illustrates the growth in complexity of the CDLP versus that of the CMIP

for the previous examples. As one can see, the CMIP doesn’t increase in size as fast,

which would allow for consideration of being tractable for industry use.

2.6 Conclusions and Future Work

The proposed CMIP formulation uses an MNL model to explicitly model the

impact of network-wide offerings on the probability of purchase to better reflect cus-
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Number of Number of Variables

Network Instance Products CMIP CDLP

Three Leg Example 8 24 255

Small Network Example 22 116 4.2 x 106

Large Network Example 534 3598 5.6 x 10160

Table 2.10: Variable Complexity of CMIP and CDLP for a Single Time Period

tomer behavior. Using problem instances of varying size, we have shown that CMIP

outperforms both the EMSR-b and a basic network formulation. Another model used

as a benchmark for performance was the CDLP, which utilizes the same MNL model

to develop its probability of purchase but yields a solution that is somewhat difficult

to decipher and implement. The CMIP in comparison offers an easy interpretation

of its solution. The CMIP and CDLP performed similarly in both model solutions

and simulation. The advantage of the CMIP, however, is based on the model’s com-

plexity. The CMIP is much smaller in size and easier to solve in most cases. As the

network becomes more complex, the CMIP does not exponentially increase in size as

the CDLP does.

From a pragmatic perspective, the CMIP approach builds on the advantages of

previous models by addressing passenger choice in a computationally more efficient

manner. Future work includes full scale tests of the approach and calibration of the

passenger choice model needed to drive the optimization. Another aspect for future

research includes the consideration of non-stationary demand to incorporate variation

in the market demand over time. Other areas include expanding the model to handle

bookings of multiple passengers at once, and time dependent demand utilities and

pricing.

With the results from the examples and the possibility of many industry specific
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extensions, the CMIP looks promising for future research. The CMIP could improve

on the models currently being used by leading airline companies today as well as be

the groundwork for further development in the area of RM. Utilizing choice modeling

and mathematical programming, the choice-based mixed integer program successfully

optimizes the network RM problem for the airline industry. Further development of

this model could assist in changing the way the industry solves their network RM

problems.
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Chapter 3

A MULTINOMIAL LOGIT FRAMEWORK FOR AIRLINE TICKET

ATTRIBUTE AND PRICE SENSITIVITIES

3.1 Introduction

Airline revenue management (RM) research is typically divided into two cate-

gories: independent and dependent demand models (Talluri and van Ryzin, 2004b).

Independent demand models, originally formulated in the mid 70’s, assume demand

for tickets can be segregated by price ranges, called fare classes, and that the proba-

bility of purchase is independent of which tickets are available at the time of purchase.

Dependent demand models for airline RM, on the other hand, assume demand for

tickets is dependent on what is offered at the time of purchase, and account for fare

class competition within similar origin-destination combinations through utility-based

choice models. Outclassed by fewer assumptions and a better representation of pas-

senger purchasing behavior, independent demand models have been virtually replaced

by dependent demand models in academic research. Despite the shift towards depen-

dent demand in academic research, many industry applications still utilize models

based on independent demand assumptions (Talluri and van Ryzin, 2004b).

Most dependent demand RM models utilize static assumptions on purchasing

utilities and probabilities of purchase, failing to account for the diverse nature of pur-

chasing behavior present in today’s competitive airline industry. These RM models,

mostly centered around linear and dynamic programming techniques, fail to address

the details of the demand models and their impact on the solutions set forth by

the RM methodology. These RM models make assumptions on purchasing behavior,
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such as static pricing options and known utilities, without considering the truly dy-

namic nature of airline ticket purchases. In this chapter, we introduce a framework

for airline revenue management demand modeling, incorporating multinomial logit

(MNL) choice integrated with price and ticket attribute sensitivities. This frame-

work removes the static assumptions traditional dependent demand research makes

on airline networks, and directly incorporates important attributes passengers focus

on when making purchasing decisions.

The remainder of this chapter is organized as follows. In Section 3.2 we formally

introduce the multinomial logit choice model and discuss how RM addresses ticket

utility. In Section 3.3, we highlight the diversity of ticket attributes present in today’s

airline networks and discuss the importance of pricing decisions in RM. Section 3.4

introduces the MNL framework incorporating price and ticket attributes, providing

examples of potential application on a real network. Section 3.5 reiterates the im-

portance of including price and ticket attributes in RM decision making, highlighting

the direction our framework can move RM research.

3.2 Multinomial Logit Choice Model

Multinomial logit choice models utilize a ratio of predicted values, often called

utilities, to determine the likelihood of purchases given a set of available options.

More specifically, multinomial logit models determine the probability of selecting a

particular option out of a set of alternative options by a ratio of exponential terms

in a logistic equation. The set of alternative options, θ, can be indexed 1 to M , such

that m ∈ {1, 2, ...,M} represents a particular option. For all m ∈ θ, we can then

model the probability an arbitrarily chosen person will select a particular option m
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as

P (y = m|θ) =
exm

′β∑M
m=1 e

xm
′β
, ∀ m ∈ θ, (3.1)

where xm is a vector of attributes for option m and β is a vector of sensitivities for

each attribute present in any option. We are interested in modeling N attributes,

thus β = (β1, β2, . . . , βN), where each element of β refers to the sensitivity of an

arbitrarily chosen person for that attribute. Although not explicitly modeled here, a

no- purchase option is often included to account for the probability that no purchase

is made. This option can be incorporated by introducing a utility value for not

purchasing any option, which is called v0. In this case, the probability that option m

is selected becomes

P (y = m|θ) =
exm

′β

M∑
i=1

exi
′β + v0

, ∀ m ∈ θ. (3.2)

This method of incorporating the no-purchase option provides freedom pertaining to

the probability no option is selected, since v0 could be set to any value that fits the

data.

Airlines have created their own unique product classifications to market tickets to

the general public. These different products are made up of distinct ticket attributes,

and play a role in how passengers choose to purchase tickets. For our purposes, the

model expressed in Equation 3.1 is characterized by these ticket attributes including,

price, time of day, path from origin to destination, and number of connections. Due

to the wide array of product classifications, a useful MNL model would have to

incorporate all relevant ticket attributes into the equation, creating a detailed demand

forecast based on each airline’s product classification.

Fitting these models can be computationally difficult, but methods exist for de-

termining the values of β based on sales data. Currently, the best method for fitting
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these models is a two-step parameter estimation technique developed by Newman

et al. (2014), which utilizes a log-likelihood expectation maximization technique with

linear separability. Their method efficiently finds the parameters for the utility model,

in addition to a no-purchase utility, resulting in a practical application of choice-based

demand modeling for the revenue management. Traditional methods, like the expec-

tation maximization and log-likelihood maximization techniques found in Talluri and

van Ryzin (2004a) also work, but can be computationally prohibitive, making it dif-

ficult for airline’s to implement for practical use.

When it comes to MNL choice models, revenue management literature has taken

a simpler approach to the problem by reducing the complexity of the MNL equation.

The exponential values, exm
′β, are interpreted as product utilities, where these util-

ities become the parameters for nearly all dependent demand revenue management

models. These revenue management models reduce the complex nature of the MNL

equation, assuming the form of the equation is known, by reducing the problem into

a ratio of utilities of the form

Pm =
um

M∑
i=1

ui + v0

, ∀ m ∈ θ, (3.3)

where um represents the utility for product m, v0 represents the no-purchase utility,

and Pm represents the probability of purchase for product m (Talluri and van Ryzin,

2004a; Gallego et al., 2004; Bront et al., 2009). The assumption that allows for this

simplification of the MNL model deals with static prices and fare class offerings: each

fare class has a price that cannot be changed and each origin-destination path can have

multiple fare classes. With these assumptions, the static-utility models predicting

passenger behavior are accurate, resulting in implied prices based on ticket offering

decisions.

Due to this simplification, though, most choice-based revenue management models
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in existence are unable to solve for price and ticket availability, despite the impact

these decisions have on passenger choice, especially pertaining to those attributes with

the biggest effect (such as price). Under the static environment, revenue management

models make no attempt at balancing price alongside ticket attributes, leaving a gap

between true purchasing behavior and modeled purchasing behavior. Consequently,

the resulting bid prices established by revenue management models based on these

static-utility assumptions fail to take into account the impact of price on passenger

preference, despite being the primary mechanism for pricing in the airline industry.

3.3 Current Airline Implementation of Ticket Attributes and Pricing

As previously mentioned, every airline has established its own product classifica-

tion, as seen by the wide array of ticket displays. Based on these ticket displays, a

ticket is made up of the product classification and specific flight information. While

mostly a marketing decision, these product classifications have a large impact on the

way passengers purchase tickets, implying the attributes included in each product

should play a role in how the MNL model is characterized. Thus, identifying the at-

tributes associated with the products, and subsequently including these attributes into

our MNL model, would lead to a fine-tuned choice-based demand model, eventually

leading to better ticket availability and pricing decisions under a RM methodology.

We can compare major airlines and their ticket displays side-by-side, and see

the wide array of products passengers have to consider when purchasing a ticket.

Despite providing the same fundamental service, a flight from an origin to a desti-

nation, American Airlines (AA) (Table 3.1) appears to have more products than its

competitor, Delta Airlines (DA) (Table 3.2), with American Airlines offering seven

different products compared to that of Delta Airline’s three. These products, made

up of different attributes, segments their demand in a way each airline has decided
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upon. American Airlines spreads out the attributes by offering products with flexi-

bility versus non-flexible attributes, and offers more product options differentiated by

refundability. Delta Airlines, on the other hand, categorizes their products by cabin,

separating out the basic economy from the Main Cabin, eventually leading to first

class. The fundamental service, a flight from an origin to a destination, is the same,

despite the varying products offered by each airline.

The differences in attribute selection for products are even more pronounced if

we compare AA to Southwest Airlines (Table 3.3) or Jet Blue (Table 3.4). South-

west Airlines and Jet Blue have fewer product classifications, while still providing the

same flight options. Southwest Airlines focuses on product classifications based on

attributes as opposed they have deemed important for each demand segment, while

Jet Blue has taken a simplistic approach by offering only two products. All of the

products offered by these airlines are made up of different ticket attributes, like re-

fundability and number of free bags, and impact the purchasing behavior of potential

passengers. Despite this impact, dependent demand RM models fail to address the

different attributes for each product, and adhere to their static utility models, creating

a gap between literature and implementation.

Lowest Fare Refundable Business/First

Ticket
Choice First Choice

Fully First
First

First

Attribute Flexible Flexible Flexible

Refundable No No Yes Yes Yes No Yes

Transferable No Same Day Yes Yes Yes Same Day Yes

Priority Check-in No Yes No Yes Yes Yes Yes

Priority Boarding No Yes No Yes Yes Yes Yes

Free Bags 0 3 0 2 3 3 3

Bonus Miles No Yes No No Yes Yes Yes

Table 3.1: American Airlines Product Attributes (American Airlines, 2016)
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Ticket Basic Main First/

Attribute Economy Cabin Business

Refundable No With Fee With Fee

Transferable No With Fee With Fee

Priority Boarding No Yes Yes

Seat Assignments At Check-in At Purchase At Purchase

Loyalty Program Benefits No Yes Yes

Upgraded Food Options No No Yes

Table 3.2: Delta Airlines Product Attributes (Delta Airlines, 2016)

Ticket Wanna Get
Anytime

Business

Attribute Away Select

Refundable No Yes Yes

Transferable With Fees Yes Yes

Priority Boarding No No Yes

Priority Security Lane No No Yes

Loyalty Miles Regular Bonus Bonus

Free Bags 2 2 2

Complementary Drinks No No Yes

Table 3.3: Southwest Airlines Product Attributes (Southwest Airlines, 2016)

Ticket Lowest Refundable

Refundable No Yes

Transferable With Fees Yes

Priority Boarding With Fees With Fees

Free Bags 1 1

Table 3.4: Jet Blue Product Attributes (Jet Blue Airlines, 2016)

Since demand for airline tickets comes from the general population, it is apparent

that demand for a specific ticket comes from a common customer pool, indifferent
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of airline. Although some airlines have frequent fliers, passengers typically focus on

the price of a ticket before other attributes, including the airline of choice. Thus,

each airline should be generating a unique choice-based demand model based-off of

their own ticket display, as these ticket displays define the attributes assigned to

each product. To do this, a general choice-modeling framework incorporating ticket

attributes and price must be developed.

3.4 MNL for Ticket Attributes and Pricing

To incorporate ticket attributes and price into the multinomial logit choice model,

we consider a network of airports connected with legs l ∈ L, and multiple demand

markets defined by the set J , such that a market j ∈ J is defined by an origin and

destination combination. Each customer is assigned to an origin-destination market,

j, determined by a probability λj, where each customer arrives from a common de-

mand pool with an overall arrival rate per time period of γt. For each market j, we

have a super-set of ticket availability matrices which we refer to as Ij. This super-set

is made up of multiple ticket availability matrices, i ∈ Ij, where i represents a single

ticket matrix availability for market j. For each ticket availability matrix i, we have

an offer set of available tickets, Kji, such that k ∈ Kji represents a ticket in ticket

availability matrix i for origin-destination market j.

To better explain this set notation, consider the example for the American Airlines

flights from PHX to JFK, seen in Figure 3.1. We would define the set of legs, L, as

{PHX-JFK,PHX-DFW,DFW-JFK,PHX-CLT,CLT-JFK}, as these are the only legs

present in this example. The market, j, defined by the origin-destination combination,

would be PHX-JFK. For this example, there would only be one market, so J would

be made up of one element. Figure 3.1 depicts one ticket availability matrix; the

available tickets are offered at a price, and the unavailable tickets are indicated by
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Figure 3.1: American Airlines Example Offer Set for PHX to JFK (American Air-
lines, 2015)

“Not Available”. Note that in this example one can construct 224 − 1 different ticket

availability matrices, that is, i ∈ Ij, where Ij = {1, 2, . . . , 224 − 1}, but most of these

are invalid for revenue management applications. Nesting of ticket products would

have to be preserved, so ticket availability matrices that have products like “Coach

Non-Refundable” available while making products like “Coach Flexible” unavailable

would be dismissed. Nesting of ticket products greatly reduces the number of ticket

availability matrices, while preventing bizarre combinations airlines refuse to offer.

Each flight would have a total of seven distinct nested product offerings, resulting

in a total of 67 = 279, 936 ticket availability matrices, compared to the 224 − 1 =

16, 777, 216 ticket availability matrices without nesting.

To see an alternative ticket availability matrix, note that copying the set of ticket

availability displayed in Figure 3.1 and replacing Flight 425’s Coach Non-refundable

ticket to “Not Available” would produce a unique alternative ticket availability matrix

that preserves the nesting of ticket options. Traditional revenue management models
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focus on optimizing the availability of these tickets, thus we denote the tickets listed

in i as the set Kji, where k ∈ Kji indicates a specific ticket, such as Flight 622, Coach

Flexible. From the ticket display in Figure 3.1, we can see that a ticket could be

defined by the intersection of a flight and product, and that there are a total of 24

tickets, some of which are not available. Thus, each ticket is made up of a combination

of product attributes, as well as flight attributes.

With these definitions, we can incorporate price and other ticket attributes into

the MNL model previously discussed. To do this, we must break down the MNL

model by characterizing the regression component of our MNL, namely, x′
nβ, into

components more fitting for airline revenue management. As previously discussed,

price is an important component to revenue management, thus separating price and

its sensitivity from the remainder of the regression equation would create a model

that can be used to solve for price directly, while considering the dynamic nature of

purchasing behavior.

We can define a predicted response for ticket k as αk, that represents the overall

desire to purchase ticket k based on the various attributes. Under this definition, αk

can be characterized as

αk = Ykβp + x′
kβ, ∀ k ∈ Kji, (3.4)

where βp is the sensitivity to price for a ticket and Yk is the price for ticket k. Similar

to the MNL definition in Equation 3.1, xk is a vector of attributes associated with

ticket k, but without price, and β is a vector of sensitivities for these attributes, but

without price. Based on Figure 3.1, if the two attributes we were concerned with

were “Refundable” and “Number of Stops”, xk = (1, 0) for the “Coach Refundable”,

Flight 425 ticket since that ticket is refundable and has no stops. Conversely, the

“Coach Non-refundable” ticket for Flights 1336 and 64 would yield an xk = (0, 1)
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since that ticket is non-refundable and has a stop. Although this is a small example,

any ticket attributes could be incorporated into xk in this manner. These ticket

attributes could be departure time, number of stops, or travel time, in addition to the

ticket attributes characterized by American Airline’s Coach Non-Refundable, Coach

Refundable, Business Non-Refundable, and Business Refundable products.

To compare this to the static-utility MNL format, we can define uk as the utility

of ticket k, evaluated as

uk = eαk , ∀ k ∈ Kji. (3.5)

As opposed to the static utility model, uk has dependency on ticket price and at-

tributes, thus any revenue management model utilizing these utilities must dynami-

cally determine the utilities while solving for ticket price and availability.

Implementation of this model is rather straight forward, and we can utilize it to

determine probabilities of purchase for any demand component. We can calculate the

probability a customer from market j will purchase a ticket in the ticket availability

matrix i, Pji, as

Pji =

∑
k∈Kji

uk∑
k∈Kji

uk + vj
, ∀j ∈ J, i ∈ Ij, (3.6)

where vj is the no-purchase utility for origin-destination market j. Since the MNL

model deals with availability when determining purchase probabilities, the probability

a ticket is purchased is directly related to what tickets are available at that time.

Based on a given ticket availability matrix i, we can also calculate the probability a

customer purchased ticket k as

Qk|ji =
uk∑

k∈Kji
uk + vj

(
1

Pji

)
, ∀ j ∈ J, i ∈ Ij, k ∈ Kji. (3.7)

This value, Qk|ji, could then be used for a revenue management model that takes

price and ticket attributes into account when determining ticket availability based

solely on ticket purchase probabilities, rather than ticket utilities. Since Qk|ji is
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dependent on price, as well as other attributes, the relationship between ticket price

and purchase probability is accounted for, as opposed to the static utilities of previous

revenue management techniques.

3.4.1 Implementation of MNL Framework

We can implement this framework and display its usefulness with an example of

two competing airlines. Suppose we have two flights from PHX to JFK for each airline,

American Airlines and Delta Airlines, with product definitions, ticket attributes, and

pricing seen in Table 3.5. Under static utility models, AA and DA would expect

similar utilities for the purchase of each ticket, since they are offering similar products:

a ticket from PHX to JFK at similar times. These similar utilities would result in

similar probabilities of purchase, under the static utility models, which should result

in similar revenue management policies.

Airline Departure Time Number of Stops Ticket Purchase Options & Price

AA 9:00 AM 0
Lowest Fare - Choice Refundable - Choice

$250 $325

AA 4:30 PM 1
Lowest Fare - Choice Refundable - Choice

$265 $340

DA 9:15 AM 0
Basic Economy Main Cabin

$235 $340

DA 5:00 PM 1
Basic Economy Main Cabin

$270 $335

Table 3.5: Ticket Options for PHX to JFK

In reality, though, the ticket offerings for each airline are different, due to the

different product classifications each airline has taken. The Lowest Fare - Choice

product for AA contains no special ticket attributes, similar to the Basic Economy
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product of DA, whereas the Refundable - Choice product contains a mixture of ticket

attributes like Refundable and Transferable, similar to the Main Cabin product of

DA. There are differences, though, between the products of each airline, and these

differences could impact the probability of purchase. We can use the MNL framework

described above to generate utilities dependent on ticket attributes and price based

on a given set of sensitivities, taking into account these different product classification

schemes. For instance, consider the attribute sensitivities seen in Table 3.6, which

were entirely fabricated.

Using these sensitivities for both airlines and the market population, we can gen-

erate utilities for each ticket for both AA and DA based on our MNL framework,

seen in Table 3.7, and compare each airline’s probabilities of purchase assuming all

four tickets are being offered for each airline (Table 3.8). In this example, we assume

the utility for no-purchase, that is a passenger choosing not to purchase a ticket, is

zero. This implies that when a passenger shows up to purchase a ticket, a purchase

will always be made. Since each airline would develop their demand models indepen-

dently of one another and the probability of no-purchase is zero, the probabilities of

purchase within each airline should sum to one.

As Table 3.8 suggests, the probabilities of purchase for each airline are substan-

tially different despite offering similar ticket options. AA’s demand is somewhat

evenly distributed between the four options, with the later flight Lowest Fare - Choice

product yielding the smallest probability of purchase. DA’s demand heavily favors

the Main Cabin product, primarily due to the priority boarding and seat assignments

at purchase, with more than 10 times the probability of purchasing these Main Cabin

products versus their Basic Economy counterparts.

Since the majority of revenue management models utilize these probabilities of

purchase, implementation of the MNL framework suggested here would generate
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Ticket Attribute Attribute Sensitivity

Departure Times

00:00 - 06:00 +1.5

06:01 - 12:00 +2.0

12:01 - 18:00 +1.7

18:01 - 24:00 -0.2

Ticket Changes

Transferable (Free) +0.60

Transferable (With Fee) +0.25

Refundable +2.1

Day of Flight

Priority Check-in +0.50

Priority Boarding +0.75

Number of Free Bags +0.50 per bag

Loyalty Program Perks +0.25

Other Attributes

Seat Assignment (At check-in) +0.0

Seat Assignment (At purchase) +2.1

Number of Stops -0.5 per stop

Ticket Price -0.01 per $

Table 3.6: Ticket Attributes and Passenger Sensitivities
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Airline Departure Time Number of Stops Ticket Options & Utility

AA 9:00 AM 0
Lowest Fare - Choice Refundable - Choice

4.95 4.71

AA 4:30 PM 1
Lowest Fare - Choice Refundable - Choice

2.59 3.49

DA 9:15 AM 0
Basic Economy Main Cabin

0.70 14.15

DA 5:00 PM 1
Basic Economy Main Cabin

0.45 9.03

Table 3.7: Calculated Ticket Utilities for PHX to JFK

Airline Departure Time Number of Stops Ticket Options & Purchase Probability

AA 9:00 AM 0
Lowest Fare - Choice Refundable - Choice

0.31 0.30

AA 4:30 PM 1
Lowest Fare - Choice Refundable - Choice

0.16 0.22

DA 9:15 AM 0
Basic Economy Main Cabin

0.03 0.58

DA 5:00 PM 1
Basic Economy Main Cabin

0.02 0.37

Table 3.8: The Probabilities of Purchase Implied by the Utilities Given in Table 3.7

unique ticket availability and pricing solutions for AA and DA, whereas the static

utility models currently implemented would result in similar ticket availability and

pricing for each airline. The differing attributes for each product and inherent at-

tributes within each ticket create unique purchase probabilities that our framework

can determine, without over-complicating the MNL demand model and tailoring it

to an individual airline’s use. These purchase probabilities can then be fed into a

revenue management model, leading to unique policies for each airline.
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3.4.2 Solving for RM Policies Considering Ticket Attributes

In this section, we demonstrate the impact of using a carefully constructed MNL

model that more accurately reflects customer preferences. To do this, we use the

utilities developed in the previous section to solve the Choice-based Mixed Integer

Program (CMIP) from Chapter 2. Solving the CMIP for both AA and DA, separately,

will highlight the impact these differing utilities and ticket attributes have on the

revenue management controls, which ultimately impact expected revenue.

We assume each itinerary (four tickets for each airline) only has a single seat

available, and a total of five potential passengers are arriving (γt = 5) in a single time

unit (T = 1). Since each airline has two flight options, this means there is a total of

two seats available per airline when a passenger shows up to purchase a ticket. The

earlier flight for each airline has no stops, as indicated by Table 3.9, while the later

flights have a single stop. We only consider a single seat on each of these flights to

represent the immediate decision an airline would have to make for a set of potential

passengers. To this end, we solve the CMIP and simulate the results in the same

fashion as Chapter 2.

Since we are only concerned with the PHX-JFK market, the connecting flight

implied by the single stop for the later flights and its competitive demand is ignored.

Although this example is simple, it will allow us to show the impact different revenue

management controls can have on identical demand streams considering we have

different utilities for each airline, as opposed to traditional static-utility based revenue

management models. The results from the CMIP model are summarized below in

Table 3.9, in a manner the airline industry would typically use.

Table 3.7 makes it readily apparent that the price and attributes included in a

ticket can play a large role in the distribution of utilities, whereas Table 3.9 reinforces
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Airline Departure Time Number of Stops Ticket Options & Purchase Probability

AA 9:00 AM 0
Lowest Fare - Choice Refundable - Choice

Not Available $325

AA 4:30 PM 1
Lowest Fare - Choice Refundable - Choice

Not Available $340

DA 9:15 AM 0
Basic Economy Main Cabin

Not Available $340

DA 5:00 PM 1
Basic Economy Main Cabin

$270 $335

Table 3.9: Ticket Availability for PHX to JFK Tickets Based on CMIP Solution

this impact by demonstrating the differing revenue management policies employed

by each airline. Under the utilities in Table 3.7, AA earns an expected revenue of

$577 for their two seats, and chooses to close the lower priced tickets for each of their

flights. DA earns an expected revenue of $562 for their two seats, slightly less than

their AA counterpart, while choosing to close only one ticket option, leaving the other

three options open for purchase. Although there is a difference in expected revenue, a

total of 2.5%, the important piece of this result is the different policies. An identical

demand stream was used for each airline, yet, due to the attributes included in each

product and ticket, their policies are substantially different. These differences would

play a huge role in revenue generation, and would only be compounded with a larger

network.

3.5 Conclusion

The use of dependent demand models is clearly the direction revenue manage-

ment should continue to move, but the assumptions of static utility models prevent

RM practitioners from properly modeling purchase behavior, producing sub-optimal
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ticket availability and pricing decisions. We have introduced an MNL framework

that incorporates ticket attributes, including price and other ticket options, better

representing the true purchase behavior of customers and opening the door for future

revenue management models to incorporate better estimates of ticket utilities.

By directly incorporating price and common ticket attributes into the MNL frame-

work, our framework allows for RM models based off of responsive demand models to

be developed, hopefully leading to RM models that can manage both ticket pricing

as well as ticket availability. These two decisions, pricing and ticket availability, are

the crux of an airline’s revenue management system, but are often solved separately

due to the complex nature of purchasing behavior. This framework gives researchers

and practitioners of RM an opportunity to formulate RM models with more accurate

demand predictions while taking into account all ticket attributes designated by the

airline, as well as the products classified by the airline’s ticket display. The flexibility

of regression equations in the MNL framework allows each airline to generate their

own utility models based on their products, generating a unique demand stream for

optimization.

Additional applications of this framework, outside of RM, could be focused around

product definitions. Each airline has chosen attributes to generate their product

classifications, but don’t necessarily consider how these decisions impact revenue.

Utilizing this framework, a model could be developed that determines which attributes

to incorporate into a product definition, while considering purchase behavior based

on these attributes. A model of this type would bridge the gap between marketing

decisions and revenue management, fueled by the MNL framework suggested here.

The next step for RM is implementing this framework into a model that can

effectively handle both ticket availability and pricing decisions, while dynamically

determining demand based on these decisions. Incorporating the nature of passenger
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preference based on price and other ticket attributes directly into the RM model allows

for better demand estimates and the resulting controls airlines use for ticket display

and pricing. Additionally, this MNL framework could be used as a marketing tool,

generating demand estimates for different assignments of ticket attributes to products.

One could generate probabilities of purchase to determine the distribution of demand

based on different attributes, selecting the product classification that maximizes either

revenue or overall market share.
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Chapter 4

ADDRESSING TICKET ATTRIBUTE AND PRICE SENSITIVITIES IN

CHOICE-BASED REVENUE MANAGEMENT

4.1 Introduction

In general, airline Revenue Management (RM) is centered around the control of

inventory by focusing on ticket availability or seat protection levels. In traditional

RM, important factors such as price are incorporated by implementing “fare class

buckets”, representing subsets of the market willing to purchase at a range of prices.

To address the complex nature of purchasing behavior, practitioners of RM have

increased the number of fare classes for each ticket type in an attempt to capture the

widest range of potential purchases. This proliferation of fare class buckets has created

an overly-complex environment, forcing the industry to take sub-optimal approaches

in managing their inventory levels.

In this chapter, we introduce a new model that eliminates the need for fare classes

within product classification, and addresses the nature by which customers purchase

tickets. By manipulating prices while simultaneously assigning availability, our model

is able to incorporate customer sensitivities to common ticket attributes, such as price

and travel perks, while maximizing revenue in a choice-based demand setting. Con-

trary to other choice-based demand RM models, our dynamic-pricing model doesn’t

rely on complex fare class structures, and can set prices explicitly without the added

complexity of the current fare class system. Our results indicate that price is an

important factor governing purchasing behavior, and that traditional RM models

aren’t satisfactory in modeling this sensitivity with fare classes, and thus generate
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sub-optimal solutions.

The remainder of this chapter is structured as follows. In Section 4.2 we provide a

brief literature review centered around choice-based models to create the framework

of traditional RM, with some emphasis given to the process of pricing products. In

Section 4.3 we introduce the Price-Dynamic Choice-Based Mixed Integer Program

(PCMIP) alongside the demand model definition and problem framework. In Section

4.4, we solve the PCMIP on problem instances of varying size and complexity, and

compare them against the Choice-based Mixed Integer Program found in Chapter 2.

Section 4.5 contains a short summary of our work, conclusions drawn from the results,

and some insight into the future of pricing and its importance within RM.

4.2 Literature Review

Revenue management is not a new field of research by any stretch of the imagi-

nation. Older models, focused around independent demand assumptions, have been

developed and used for decades and built the framework we now use to further ad-

vance the field. Our research, although developed on the backbone of original RM

research, is primarily focused on choice-based demand and the subsequent pricing of

tickets, thus the literature review will be focused around these principles.

4.2.1 Revenue Management Models

Some of the groundbreaking work completed in choice-based revenue management

is found in Gallego et al. (2004) and Talluri and van Ryzin (2004a). In Gallego et al.

(2004), the authors consider a network of flexible products, under both independent

and dependent demand models, and introduce a choice-based deterministic linear pro-

gram (CDLP) that closely approximates the stochastic optimization problem. Their

linear program is easily solvable under independent demand assumptions, and they
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provide a framework for column generation under the more complicated dependent

demand formulation (Gallego et al., 2004). Talluri and van Ryzin (2004a) take a

different approach and introduce a dynamic programming formulation that incor-

porates a general discrete choice model while determining optimal offer sets. The

authors present an analysis of the efficient frontier, a subset of ordered policies for

which all other policies are sub-optimal, in a single leg environment. Due to the

difficult nature of parameterizing choice-models, Talluri and van Ryzin (2004a) also

develop an expectation maximization technique for fitting the demand model, given

information from a single firm.

Following the work of Gallego et al. (2004), Liu and van Ryzin (2008) expand on

the linear programming formulation and investigate the effects of increased network

complexity and the scaling of demand and capacity. The authors extend the previous

notion of efficient sets into a network framework, and offer a heuristic to convert the

static CDLP solution into a dynamic policy, solidifying its presence in the literature.

Bront et al. (2009) also introduce a means to solve the CDLP by constructing a column

generation algorithm under disjoint demand assumptions. Their column generation

algorithm provides a strong approximation to the dynamic program found in Talluri

and van Ryzin (2004a), while efficiently providing a means of solving the complex

dependent demand version of the CDLP found in Gallego et al. (2004). Due to the size

of the CDLP, Gallego et al. (2011) introduce a sales-based linear program that reduces

the number of variables under a general attraction model, while still converging to

the same expected revenue as that of the CDLP. Similarly, Clough et al. (2014) offer

an alternative formulation in the form of a mixed integer program. Clough et al.

(2014) consider a multinomial logit choice model in an airline network setting, and

assume market demand in which origins and destinations are separate can be solved

independently. Their model, the Choice-based Mixed Integer Program (CMIP), offers
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a smaller solution space under these assumptions, and maintains revenue performance

compared to the CDLP and traditional airline control mechanisms.

4.2.2 Dynamic Pricing Models

Dynamic pricing in a choice-based environment is a relatively new area of research

within RM. Prior to choice-based demand models being in the spotlight, some research

had focused on the importance of pricing, as seen in Jacobs et al. (2010), where

the authors investigate the relationship between pricing and revenue management

controls. Jacobs et al. (2010) consider the impact capacity has on the dynamic pricing

problem, creating a “price balance statistic” used for evaluating the quality of a

strategy and finding the optimal mix of pricing, scheduled capacity, and RM controls.

Choice-based dynamic pricing research has taken a different approach. Aydin and

Ryan (2000) consider a retail setting where consumers choose products based on a

pre-defined selection and pricing setup. The authors examine multiple environments

including the introduction of new products with associated pricing and the selection

of a pre-selected set of product and price options. Zhang and Cooper (2009) introduce

a Markov decision process to address dynamic pricing in an MNL environment. They

consider multiple substitutable flights in a single O&D market, and show their model

is intractable for realistic settings. In a similar approach, Dong et al. (2009) develop

a dynamic programming formulation in a retail environment. They consider an en-

vironment with a long lead time and short selling environment, where the retailer

must determine both inventory and pricing. More recently, Zhang and Lu (2013)

introduce a dynamic programming formulation for dynamic pricing and offer a non-

linear programming approximation approach. They compare their methods against

both static pricing models and other choice-based demand models, concluding that

dynamic pricing could have substantial gains versus their static counterparts.
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We believe these dynamic pricing models have only touched the surface of what

we can achieve with pricing and revenue optimization. In the following section, we

introduce a model that builds upon the previous literature, incorporating choice-based

demand and price sensitivities directly into a price-dynamic revenue management

model.

4.3 Model Formulation

Similar to the previous chapter, we consider a network of airports connected with

legs l ∈ L, and multiple demand markets defined by set J , such that a market j ∈ J

is defined by an origin and destination combination. Customers arrive to the system

in multiple time periods, indexed 1 to T , with a rate of γt, t = (1, 2, . . . , T ). These

customers are subsequently assigned to a market j, where λj refers to the probability

a passenger is assigned to market j. For each market j, there is a super-set of policies

defining ticket availability, Ij, where i ∈ Ij represents a specific matrix of ticket

availability for market j, similar to Chapter 3. For each ticket availability matrix i,

there is an offer set of available tickets, Kji, such that k ∈ Kji represents a ticket in

ticket availability matrix i for origin-destination market j.

Since price is of concern, we must consider the possibility that prices can change

with time. In Equation (3.6), time has no bearing on the probabilities of purchase.

We can incorporate the time component into our MNL probabilities by including the

possibility for prices to change in different times units. All other ticket attributes

would remain the same, so the only adjustment that needs to be made is to index

price by both time and ticket k, resulting in overall ticket sensitivities dependent on

ticket attributes, price, and time period, characterized as

αkt = Yktβp + x′
kβ, ∀ k ∈ Kji, t ∈ {1, 2, . . . , T}, (4.1)

71



www.manaraa.com

where Ykt represents the price for ticket k in time period t, and βp, xk, and β have

the same meaning as in Chapter 3. Since αkt now has a time component, the utilities

for each product would also have a time component, as seen in Equation (4.2).

ukt = eαkt , ∀ k ∈ Kji, t ∈ {1, 2, . . . , T}. (4.2)

Under this setup, we can modify the probabilities defined in Chapter 3 to incor-

porate time periods, resulting in the probability a purchase is made in market j in

ticket availability matrix i in time period t, as

Pjit =

∑
k∈Kji

ukt∑
k∈Kji

ukt + vj
, ∀ j ∈ J, i ∈ Ij, t ∈ {1, 2, . . . , T}, (4.3)

and the probability a passenger purchases ticket k in time period t, as

Qkt|ji =
ukt∑

k∈Kji
ukt + vj

(
1

Pjit

)
, ∀ j ∈ J, i ∈ Ij, k ∈ Kji, t ∈ {1, 2, . . . , T}. (4.4)

These probabilities will allow us to incorporate price and ticket attribute sensitivities

directly into a revenue management model. Building upon the complexity gains

of the CMIP, we introduce the Price-dynamic Choice-based Mixed Integer Program
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(PCMIP):

Maximize
∑
t∈T

γt
∑
j∈J

λj
∑
i∈Ij

Pjit
∑
k∈Kji

Ykt Qkt|ji (4.5)

Subject to:∑
t∈T

γt
∑
j∈J

λj
∑
i∈Ij

Pjit
∑
k∈Kji

Qkt|jiAkl ≤ cl, for all l ∈ L, (4.6)

∑
i∈Ij

Xjit ≤ 1 , for all j ∈ J, t ∈ {1, 2, . . . , T}, (4.7)

Pjit =

∑
k∈Kji

ukt∑
k∈Kji

ukt + vj
, for all j ∈ J, i ∈ Ij, t ∈ {1, 2, . . . , T}, (4.8)

Qkt|ji =
ukt∑

k∈Kji
ukt + vj

(
1

Pjit

)
,

for all j ∈ J, i ∈ Ij, k ∈ Kji, t ∈ {1, 2, . . . , T}, (4.9)

LBk ≤ Ykt ≤ UBk, for all k ∈ Kji, t ∈ {1, 2, . . . , T}, (4.10)

Xjit ∈ {0, 1}, for all j ∈ J, i ∈ Ij, t ∈ {1, 2, . . . , T}. (4.11)

There are two decision variables for the PCMIP. Xjit represents the binary decision

to select ticket availability matrix i for origin-destination market j in time period t,

which allows any ticket k ∈ Kji to be purchased. Ykt represents the price for ticket

k in time period t, thus the model can manipulate Ykt directly to reach capacity as

opposed to opening and closing a set of fare classes, as often seen in traditional RM

models. With these decision variables, the PCMIP will select a ticket availability

matrix as well as assign the prices to each available ticket in that matrix.

The objective function, given in Equation (4.5), represents the expected revenue

under the decision variable Ykt, taking into account the probability a ticket purchase

is made, determined by Pjit and Qkt|ji. Constraint set (4.6) bounds the expected

demand to that of the capacity on a leg, cl. Constraint set (4.7) ensures the model

can only select one ticket availability matrix of the super-set Ij. Constraint sets
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(4.8) and (4.9) define Pjit and Qkt|ji, based on Equations (4.3) and (4.4), respectively.

Constraint set (4.10) establishes lower and upper bounds on the pricing decision for

each ticket, while constraint set (4.11) defines the binary restriction for Xjit.

The PCMIP is unique when compared to other choice-based revenue management

models previously developed. First, it determines the ticket availability matrix to be

used for any time period, while simultaneously setting ticket prices. Compared to

other revenue management models, such as the CMIP, the PCMIP has flexibility in

pricing instead of being limited to a static price. The PCMIP eliminates the need

for a two-step optimization process by combining the decisions of ticket availability

and pricing into a single, concise model. Secondly, similar to the CMIP, the PCMIP

reduces the number of ticket availability matrices to consider when compared to other

choice-based revenue management models by separating origin-destination markets

that are independent of one another. Although airline networks are large due to a

highly connected network, the PCMIP is able to manage these complex networks

under this independent market assumption.

Computational complexity, though, is a hurdle that needs to be addressed. As

modeled, the PCMIP is a mixed integer non-linear program (MINLP), which can

be extremely difficult to solve. Fortunately, the structure of this problem leads to a

relatively easy solution with standard branch-and-cut algorithms. The structure of

the PCMIP, similar to the of the CMIP, only needs to consider a single ticket avail-

ability set in each market in an optimal solution. The selection between a mutually

exclusive set, like that of the super set of policies Ij, is quick to solve on its own,

resulting in a search for optimal prices. In a worst case scenario, an algorithm could

consider all ticket availability matrices i ∈ Ij, and then determine the optimal prices

given that availability set. Once these values have been determined, the algorithm

would simply pick the availability set for each market j that maximizes the total
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expected revenue. Realistically, though, branch-and-cut algorithms would be able to

set the ticket availability and prices in a traditional manner, as the selection of ticket

availability matrices are mutually exclusive. Thus, implementation of this model is

still feasible, with additional work needed on the design of an algorithm.

4.4 Computational Results

To test the efficacy and quality of the PCMIP formulation, we have constructed

four examples with varying parameters. The first example is based on the parallel

flight network seen in Liu and van Ryzin (2008) and Bront et al. (2009), and will

focus on how the PCMIP behaves compared to the CMIP when the only behavioral

factors are price and time of day preference. The second example, common among

many RM papers, is the familiar three leg network seen in Liu and van Ryzin (2008).

We compare the PCMIP to the CMIP under many fare class options, illustrating

the importance of price optimization over fare class selection. The third example is

also based on networks seen in Liu and van Ryzin (2008) and Bront et al. (2009).

We compare the PCMIP to the CMIP in a hub-and-spoke network under preferences

associated with the Southwest Airlines business model. We consider many fare class

options when evaluating the CMIP, and show the continuous price options of the

PCMIP are superior to that of the CMIP under multiple fare class options. The final

example is an expanded version of the large network example seen in Liu and van

Ryzin (2008). We consider a slightly larger hub-and-spoke network, with added direct

flights for competition in addition to time of day preference. In all cases, the policies

of the PCMIP and CMIP are simulated in a traditional Monte Carlo simulation of

1000 runs, where the passengers arrive according to a Poisson arrival process, and

each passenger considers a ticket out of the ticket availability matrix.
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4.4.1 Parallel Flights Example: Time of Day Effects

In this example (Figure 4.1), we have a single origin and destination with three

flights representing an early (Leg 1), mid-day (Leg 2), and late (Leg 3) set of flights.

Each flight leg has its own capacity, with the early flight having 30 seats available, the

mid-day flight having 50 seats available, and the late flight having 40 seats available.

We tested two preference scenarios in this network; one where price is the only factor

and one where price and time of day (ToD) are factors. In both cases, the sensitivity

to price was set to βp = −0.002, representing a negative utility to price. When ToD is

included as a factor, we put preference on the early flight, and used the mid-day flight

as a reference. Thus, in the case where ToD and price are the factors that influence

purchasing behavior, we reach a regression model of the form

αkt = −0.002Ykt + ILeg 1 + 0.5ILeg 3 ,∀k ∈ Kji, t ∈ {1, 2, . . . , T}, (4.12)

where ILeg i represents a 0/1 selection of Leg i. In the case where ToD is not included,

implying price is the only concern for purchase behavior, we have a regression model

of the form

αkt = −0.002Ykt,∀k ∈ Kji, t ∈ {1, 2, . . . , T}. (4.13)

Figure 4.1: Parallel Flight Network - Adapted from Liu and van Ryzin (2008)
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In each scenario, we tested the network for five time units (T = 5), with γ =

(6, 12, 24, 48, 96), for a total of 186 customers introduced to the network. The no-

purchase utility, vj, was set to be 0.5 for all markets. Similar to the example in Liu

and van Ryzin (2008), each flight leg has two fare classes, High and Low, and the

bounds on the fares can be seen in Table 4.1. These bounds were generated such

that the median of the upper and lower bound match the original prices found in

Liu and van Ryzin’s example. Under these conditions, we solved the PCMIP for

the two preference scenarios, and compared the results to that of the CMIP. As

the results from Chapter 2 suggest, the CMIP does as well or better than other

models, thus if the PCMIP is able to consistently do better than the CMIP, it follows

that the PCMIP will consistently do better than other models. Additionally, to see

the efficacy of optimal pricing while selecting ticket availability, we needed a similar

model to highlight the increase. Since the PCMIP is an extension of the CMIP and

the ticket availability sets are coded in a similar fashion, comparison of these two

models would be sufficient. On its own, the CMIP doesn’t have the opportunity to

set prices directly, so we set the prices for each fare class to the original prices given

by Liu and van Ryzin (2008), and used these values to determine ticket availability

from the perspective of the CMIP.

The first scenario, with price being the only factor, converged to the solution

shown in Tables 4.2 and 4.3, for each of the models. The prices of each ticket on

each leg are given, as these represent both the availability of a ticket and the price

at which it is sold. The PCMIP is able to select its own pricing policy, whereas the

CMIP must select the prices given to it.

The simulation of the solutions from Tables 4.2 and 4.3 resulted in the PCMIP

consistently outperforming the CMIP, as displayed in Table 4.4 and Figure 4.2. The

PCMIP yielded a 6.4% increase in revenue overall, while maintaining a similar network
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Leg & Fare Class Lower Bound Original Price Upper Bound

Early High $600 $800 $1000

Early Low $200 $400 $599

Mid-day High $800 $1000 $1200

Mid-day Low $300 $500 $700

Late High $400 $600 $800

Late Low $100 $250 $399

Table 4.1: Bounds and Original Prices for Parallel Network

Table 4.2: PCMIP Solution - No
ToD Pref.

Time
Early Mid-day Late

Period

1 $945 $945 $800

2 $945 $945 $800

3 $945 $945 $800

4 $945 $945 $800

5 $945 $945 $800

Table 4.3: CMIP Solution - No ToD Pref.

Time
Early Mid-day Late

Period

1 Sold Out $1000 $600

2 Sold Out $1000 Sold Out

3 $800 $500 Sold Out

4 $800 $1000 $600

5 $800 $1000 $600

load factor (PCMIP 78% versus CMIP 82%) and traffic. Since the PCMIP is free to

select price, and thus less constrained than the CMIP, the higher revenue gains were

expected, and the PCMIP dominated the CMIP in cumulative revenue over the five

time periods.

The second scenario for this network, where price and time of day preferences

were considered, yielded a considerably more dynamic solution, as seen in Tables 4.5

and 4.6. Now that price isn’t the only factor to consider, the PCMIP must balance

the sensitivity to price along with the time of day preferences, resulting in a more
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Time PCMIP CMIP

Period Rev. Traffic Rev. Traffic

1 $2,627 2.96 $1,997 2.76

2 $4,896 5.52 $2,346 2.35

3 $10,236 11.53 $7,459 12.30

4 $20,883 23.55 $19,623 26.24

5 $41,375 46.54 $38,902 51.05

Total $80,016 90.10 $70,327 94.70

Table 4.4: Expected Revenue and Traffic per Time Period of Simulated Policies (No
ToD Preference)

 

Figure 4.2: Cumulative Revenue per Time Period of Simulated Policies (No ToD
Preference)
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complex pricing structure. The obtained prices were simulated, and the PCMIP

outperformed the CMIP by 13.8%, while managing to achieve a higher load factor

of 94% versus that of the CMIP’s 86% (see Table 4.7 and Figure 4.3). It is worth

noting that the “bump” in the cumulative revenue (Figure 4.3) at time period 3 stems

from the difference in solutions. The PCMIP favors closing the early and late flights

in anticipation of future demand, whereas the CMIP only closes the early flight.

Ultimately, though, the PCMIP’s solution yields higher revenue and dominates the

CMIP solution in cumulative revenue for all time periods, similar to when price was

the only consideration.

Table 4.5: PCMIP Solution - With
ToD Pref.

Time
Leg 1 Leg 2 Leg 3

Period

1 $1000 $608 Sold Out

2 $1000 $589 $800

3 Sold Out $700 Sold Out

4 Sold Out $666 $800

5 $1000 $800 $800

Table 4.6: CMIP Solution - With ToD
Pref.

Time
Leg 1 Leg 2 Leg 3

Period

1 $800 $500 Sold Out

2 Sold Out $500 $600

3 Sold Out $1000 $600

4 Sold Out $1000 Sold Out

5 $800 $500 $600

This example showed that, in the simplest of cases, the PCMIP’s ability to select

price in addition to availability outperforms the static-price version of the problem,

as solved by the CMIP. Under the conditions of the two scenarios, the PCMIP’s

flexibility dominated the expected revenue of the CMIP while maintaining comparable

load factors. Even in situations where the policies were greatly different, as seen in

time period 3 of the second scenario, the cumulative revenue of the PCMIP never

fell below that of the CMIP, suggesting the PCMIP is better equipped to handle the

necessary decisions in a parallel network of this type.
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Time PCMIP CMIP

Period Rev. Traffic Rev. Traffic

1 $2,782 3.36 $2,601 3.83

2 $6,491 8.08 $3,884 6.97

3 $6,816 9.74 $8,809 12.85

4 $22,001 29.70 $10,059 10.06

5 $53,266 60.65 $43,895 68.09

Total $91,356 111.52 $69,248 101.79

Table 4.7: Expected Revenue and Traffic per Time Period of Simulated Policies
(With ToD Preference)
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Figure 4.3: Cumulative Revenue per Time Period of Simulated Policies (With ToD
Preference)
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4.4.2 Small Network Example: Fare Class Impact

This example was modeled off of the three-leg network example seen in Liu and

van Ryzin (2008) and Bront et al. (2009), seen in Figure 4.4. We considered multiple

factors for purchasing behavior, including price, itinerary, and direct versus indirect.

The sensitivity to price was set to βp = −0.003, again, representing a negative sensi-

tivity to price. The differences between markets were set to (AB,BC,AC) = (2, 1, 3),

while the effect of direct versus indirect was set to βIndirect = −3.5, implying a negative

utility associated with having intermediate stops. Under these values, the regression

equation would read

αkt = −0.003Ykt + 2IAB + IBC + 3IAC − 3.5IIndirect ,

∀k ∈ Kji, t ∈ {1, 2, . . . , T}, (4.14)

where Ij represents the 0/1 selection for each market j, and IIndirect represents the

0/1 selection of indirect versus direct for a given ticket k. The purpose of Ij is to

account for different sensitivities across different markets. Simply put, Ij adjusts the

magnitude of αkt for each market so that every market isn’t constrained to have the

exact same utility under similar preferences. Note, though, that these values were

created for this example and do not represent the true effects of a system, but are

merely designed to show the use and quality of the PCMIP formulation.

A

B

C

Leg 2

Figure 4.4: Small Network Example - Adapted from Liu and van Ryzin (2008)
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The small network example was solved for five time units (i.e., T = 5), with

γ ∈ (1, 2, 3, 10, 25), representing a total of 41 customers entering the system. The

market arrival rates and no purchase utilities are defined in Table 4.8, while the

bounds and static prices can be found in Table A.6 in the Appendix. This network

was solved under multiple fare class assumptions, ranging from two fare classes up to

six fare classes. As more fare classes were added, the static prices of the additional fare

classes were evenly distributed around the static price of the two fare class example.

For instance, origin-destination path A-C has two prices under the two fare class

example of $1000 and $800. Expanding this to a three fare class example, path A-

C would now have three prices of $1000, $900, and $800. This same process was

repeated for all origin-destination paths and fare classes so that the CMIP had the

widest array of options for optimizing revenue. The goal of using multiple fare class

examples is to show that the gains of having more options for the CMIP are outclassed

by the flexibility of the PCMIP.

O&D Market Market Probability (λj) No-purchase Utility (vj)

AC 0.50 1.25

AB 0.25 2

BC 0.25 1

Table 4.8: Market Parameters for Small Network Example with Two Fare Classes

As seen from Table 4.9, the PCMIP outperforms the CMIP regardless of the

number of fare classes the CMIP considers. In the simplest case, with two fare classes,

the PCMIP outperforms the CMIP by 3.4%, while maintaining a similar network load

factor of 63% versus the CMIP’s 64%. These results highlight an important feature of

the PCMIP: additional fare classes don’t provide an opportunity for increased revenue

when both price and availability are being optimized. As expected, the PCMIP
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PCMIP

CMIP

Time Number of Fare Classes

Period Two Three Four Five Six

1 $398 $167 $176 $169 $173 $171

2 $293 $118 $123 $124 $123 $128

3 $554 $244 $250 $251 $250 $250

4 $1924 $2031 $1998 $2025 $2027 $2007

5 $5196 $5535 $5539 $5523 $5522 $5526

Total $8367 $8095 $8086 $8093 $8094 $8081

Table 4.9: Simulated Expected Revenue for a Selected Number of Fare Classes

represents an infinite number of fare classes since it is able to select an infinite number

of prices. This feature essentially eliminates the need for fare classes in development

of the data set, which is a common issue in traditional RM implementation where fare

classes for each ticket type have grown significantly over the years. The CMIP, on the

other hand, could show gains when adding fare classes, but in this example, under

the preference conditions stated, there isn’t an advantage to increasing the number

of fare classes.

4.4.3 Large Network Example: Implementation of Southwest Airlines Ticket

Attributes

In this example, we chose a large hub-and-spoke network and incorporated the

Southwest Airlines product classification for passenger preferences seen in Table 4.10,

reproduced from Chapter 3. The network, seen in Figure 4.5, contains eight legs

and 20 origin-destination markets, and is based on the network found in Liu and van

Ryzin (2008). Each leg has an identical capacity of 200, and the arrival rates for each
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market can be found in Table A.7 in the Appendix. We ran this example for a single

time unit (T = 1) and a γ = 2000, representing a total of 2000 customers introduced

to the system.

Ticket Wanna Get
Anytime

Business

Attribute Away Select

Refundable No Yes Yes

Transferable With Fees Yes Yes

Priority Boarding No No Yes

Priority Security Lane No No Yes

Loyalty Miles Regular Bonus Bonus

Free Bags 2 2 2

Complementary Drinks No No Yes

Table 4.10: Southwest Airlines Product Attributes (Southwest Airlines, 2016)

MIA

SAV

BOS

ATLLAX

Figure 4.5: Large Network Example - Adapted from Liu and van Ryzin (2008)

Passenger choice was modeled according to the Southwest Airlines product clas-

sification found on their website. We considered eight ticket attributes along with

three products, described in Table 4.11. As the table suggests, “Business Select” rep-

resents all ticket attributes, while “Anytime” and “Wanna Get Away” are made up
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of a subset of these ticket attributes. The regression coefficients used to develop the

probabilities of purchase are also indicated in Table 4.11, and represent a passengers

sensitivity to each ticket attribute. In addition to these attributes, we also considered

price sensitivity and set βp = −0.015, while the no-purchase utilities can be found in

Table A.7 in the Appendix.

Ticket Business
Anytime

Wanna Regression

Attributes Select Get Away Coefficient

Refundable X X 1

Reusable Funds X X X 2

Same Day Changes X X 1.5

Priority Boarding X 1

Priority Security Lane X 0.5

Two Free Checked Bags X X X 2

Complimentary Premium Drink X 0.5

Table 4.11: Southwest Ticket Definitions and Regression Coefficients for Large Net-
work Example

With these regression coefficients and the parameters of the network, we solved

the PCMIP and CMIP with a single fare class option, based on the price bounds seen

in Table A.8 in the Appendix. Again, the static price for the CMIP comes from the

midpoint between these price bounds. Both the PCMIP and CMIP were solved, and

in the form of an airline representation, the solutions for each model are displayed

in Table 4.12. As you can see, the solutions are quite different, including situations

where the PCMIP chooses to close a ticket type (ATL-MIA and MIA-ATL), whereas

the CMIP chooses to leave them open. Additionally, the pricing options are vastly

different, with the PCMIP dynamically setting prices to account for their negative
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utility.

Itinerary

PCMIP CMIP

Business
Anytime

Wanna Business
Anytime

Wanna

Select Get Away Select Get Away

ATL-BOS $379 $370 Sold Out $690 $315 Sold Out

ATL-LAX $445 $366 $340 $723 $405 $183

ATL-MIA $366 Sold Out Sold Out $632 $227 Sold Out

ALT-SAV $369 $346 Sold Out $685 $268 Sold Out

BOS-ATL $379 $370 Sold Out $690 $315 Sold Out

BOS-ATL-LAX $616 $500 $86 $1,058 $558 $250

BOS-ATL-MIA $471 $338 $217 $736 $404 $169

BOS-ATL-SAV $416 $271 $265 $708 $341 $133

LAX-ATL $445 $366 $340 $723 $405 $183

LAX-ATL-BOS $616 $500 $103 $1,058 $558 $250

LAX-ATL-MIA $836 $411 $100 $1,168 $623 $205

LAX-ATL-SAV $719 $475 $84 $1,110 $597 $237

MIA-ATL $366 Sold Out Sold Out $632 $227 Sold Out

MIA-ATL-BOS $471 $338 $200 $736 $404 $169

MIA-ATL-LAX $836 $411 $100 $1,168 $623 $205

MIA-ATL-SAV $591 $336 $128 $796 $463 $168

SAV-ATL $371 $368 Sold Out $685 $268 Sold Out

SAV-ATL-BOS $416 $266 $211 $708 $341 $133

SAV-ATL-LAX $719 $475 $91 $1,110 $597 $237

SAV-ATL-MIA $591 $336 $146 $796 $463 $168

Table 4.12: Solutions for the Large Network Example

In simulation, the PCMIP resulted in an expected revenue of $525,420, while the
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CMIP resulted in an expected revenue of $352,885. The difference between the two

models, a 48.9% increase in revenue, is primarily due to the flexibility of the PCMIP

and the use of any pricing structure bounded by the upper and lower bounds for each

ticket, whereas the CMIP must select ticket availability and is automatically forced to

pick a price based on that selection. In reality, though, airlines don’t use a single fare

class for pricing of their products. Generally, each product has multiple fare classes

within it, each with their own respective price ranges. To mimic this sort of system

and give the CMIP an opportunity to do better, we solved the CMIP under the same

network and preference parameters, but gave it the option of two, three, or four fare

classes. The prices for each of these fare classes were evenly distributed around the

original bounds to give the CMIP the best spread of options. The solutions to each

of these fare class options were simulated, and the results are tabulated in Table 4.13.

Metric PCMIP

CMIP

Number of Fare Classes

One Two Three Four

Expected Revenue $525,420 $352,885 $464,610 $498,865 $485,378

Standard Deviation $9890 $6401 $13,881 $12,833 $11,987

Coefficient of Variation 0.02 0.02 0.03 0.03 0.02

Expected Traffic 1127 1162 1031 1113 1081

Network Load Factor 98% 97% 89% 95% 94%

Table 4.13: Large Network Example Simulation Results for Varying Number of Fare
Classes

As the table suggests, the PCMIP outperforms the CMIP in all situations, even

when adding more fare class options. Even when the CMIP generates its highest

expected revenue, with three fare class options per product, the PCMIP still outper-
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forms the CMIP by 5.3%. Despite this significant increase in revenue, the PCMIP

maintains a reasonable coefficient of variation and a higher load factor. Ultimately,

the PCMIP is better able to balance the preferences of each ticket as well as price,

resulting in a better mix of passengers while maintaining a high load factor and

maximizing revenue.

This example was constructed to show two things: the PCMIP can maintain its

edge in more complex networks and that we can model the business classification of

tickets easily. Although this example doesn’t portray a full network, it does take into

account competition for seats across different itineraries and it manages to include

different ticket attributes while solving the hub-and-spoke network. Under the South-

west Airlines product classification, the PCMIP consistently outperformed the CMIP

under multiple fare class options, and maintained similar coefficient of variances and

network load factors. In this example, the PCMIP dominates the CMIP in all as-

pects, again suggesting the decision of price is more important than the number of

fare classes to consider.

4.4.4 Expanded Large Network Example: Impact of Additional Competition

Although the large network example previously discussed provided results that

solidify the PCMIP’s ability to select price in a complex network, it lacks some key

factors in choice-based revenue management. For one, the competition between origin-

destination combinations is missing, considering there are no direct routes between

the spoke cities. Additionally, the flights within the network are arbitrarily timed,

implying time of day preference isn’t important when passengers select their tickets.

To expand on the original large network example, we have added four direct flights

(seen in Figure 4.6), with each additional leg having a capacity of 100 seats.

We also incorporated time of day preference into the expanded large network ex-
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LAX ATL

MIA

SAV

BOS

Figure 4.6: Expanded Large Network Example

ample. Any flight that has a later connection is considered to be an “early flight”,

as well as any direct flight between the spokes. For instance, all flights leaving LAX,

BOS, SAV, and MIA are early flights. Conversely, all flights leaving ATL are con-

sidered “late flights”, so that any issues with timings on connections are assumed

to be satisfied. Keeping all of the regression parameters from the previous example

the same, we set the sensitivity to early flights to 0.75, implying earlier flights have

a positive effect on purchasing behavior. The additional flights were given bounds

based on ticket type, governed by the Southwest Airlines product classification, and

are displayed in Table 4.14.

Itinerary Business Select Anytime Wanna Get Away

LAX-BOS $776-$2000 $651-$775 $0-$650

LAX-MIA $991-$1875 $601-$990 $0-$600

BOS-LAX $776-$2000 $651-$775 $0-$650

MIA-LAX $991-$1875 $601-$990 $0-$600

Table 4.14: Price Bounds on Additional Tickets

In solving this example, we considered three methodologies. First, we solved
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this example with the given parameters utilizing the PCMIP. Then, we solved this

example with the CMIP, under a single fare class offering. Since we expect the

PCMIP to consistently outperform the CMIP as it can select price, we also allowed

a post-CMIP price optimization method to improve on the CMIP’s original solution.

The post-CMIP Price Optimal solution forces the PCMIP to use the CMIP solution,

but allows the PCMIP to adjust prices. Essentially, we solved the PCMIP given the

CMIP’s solution for ticket availability, creating a two-step ticket availability and price

optimization approach. After solving this example with these methods, we simulated

the results of the PCMIP (Table A.9 in the Appendix), CMIP, and Post-CMIP Price

Optimal methods (Table 4.16), and found that the PCMIP outperforms both the

CMIP and Post-CMIP Price Optimal method, as seen in Table 4.15.

Metric PCMIP CMIP
Post-CMIP

Price Optimal

Expected Revenue $637,190 $494,489 $620,321

Standard Deviation $19,918 $23,843 $22,290

Coefficient of Variation 0.03 0.05 0.04

Expected Traffic 1288 1247 1322

Network Load Factor 81% 78% 81%

Table 4.15: Extended Large Network Example Simulation Results

As the table suggests, the gains in revenue are drastic when comparing the CMIP

solution to that of the PCMIP. The PCMIP outperforms the CMIP by 28.9%, showing

an increase in overall traffic and network load factor. In spite of the poor performance

of the CMIP compared to the PCMIP, utilizing the CMIP solution and selecting op-

timal prices shows a substantial gain in expected revenue. The Post-CMIP Price Op-

timal solution improves the CMIP expected revenue by 25.4%, while falling slightly
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below the PCMIP solution by 2.6%. Thus, under more competition, more flight op-

tions, and incorporating a time of day preference, the PCMIP outperforms the CMIP

even when the CMIP’s solution is optimized for price. Although the Post-CMIP

Price Optimal solution does considerably better, this suggests the two-step optimiza-

tion approach often incorporated in the airline industry is sub-optimal, considering

the decisions of ticket availability and pricing can be solved simultaneously without

adding fare class complexity.

It is clear that optimizing pricing decisions while simultaneously setting ticket

availability produces better results compared to static models, but the results of the

Post-CMIP Price Optimal method compared to that of the CMIP highlight the impact

of pricing sensitivities on network revenue management. We can see the importance

of pricing by paying attention to the differences in pricing decisions between the

two methods. Table 4.16 contains the ticket availability and prices for the CMIP and

Post-CMIP Price Optimal method that were simulated to achieve the results in Table

4.15. On average, the CMIP charges $122 more than the Post-CMIP Price Optimal

method, deterring customers from making purchases in certain markets. Due to this

reduced average price, the Post-CMIP Price Optimal method is able to accept more

passengers but not at the expense of revenue.

These results show the added difficulty in optimizing revenue with more complex

networks. As more competition and ticket preferences are added, the passengers have

more choices to choose from, thus increasing the variability of their choice process.

Nonetheless, the PCMIP was able to handle the added complexity better than the

static model, yielding a sizable increase in expected revenue. As more complexity is

added to the network in the form of competitive flight options, the PCMIP should

be able to handle the complex network and maintain its edge compared to the static

model, as seen in the diverse set of examples given.
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Itinerary

CMIP Post-CMIP Price Optimal

Business
Anytime

Wanna Business
Anytime

Wanna

Select Get Away Select Get Away

ATL-BOS $690 $314 Sold Out $493 $378 Sold Out

ATL-LAX $723 $405 Sold Out $457 $444 Sold Out

ATL-MIA $632 $227 Sold Out $388 $263 Sold Out

ATL-SAV $685 $268 Sold Out $461 $368 Sold Out

BOS-ATL $690 $314 Sold Out $517 $378 Sold Out

BOS-LAX $1,388 $713 $325 $776 $651 $233

BOS-ATL-LAX $1,058 $558 Sold Out $739 $615 Sold Out

BOS-ATL-MIA $736 $404 Sold Out $651 $470 Sold Out

BOS-ATL-SAV $708 $341 Sold Out $645 $415 Sold Out

LAX-ATL $723 $405 Sold Out $497 $444 Sold Out

LAX-BOS $1,388 $713 $325 $776 $651 $285

LAX-MIA $1,433 $796 $300 $991 $601 $298

LAX-ATL-BOS $1,058 $558 Sold Out $623 $615 Sold Out

LAX-ATL-MIA $1,168 $623 Sold Out $836 $412 Sold Out

LAX-ATL-SAV $1,110 $597 $237 $719 $475 $371

MIA-ATL $632 Sold Out Sold Out $508 Sold Out Sold Out

MIA-LAX $1,168 $796 $300 $836 $601 $309

MIA-ATL-BOS $736 $404 Sold Out $553 $470 Sold Out

MIA-ATL-LAX $1,168 $623 $205 $836 $411 $410

MIA-ATL-SAV $796 $463 Sold Out $591 $475 Sold Out

SAV-ATL $685 $268 Sold Out $488 $368 Sold Out

SAV-ATL-BOS $708 $341 Sold Out $611 $415 Sold Out

SAV-ATL-LAX $1,110 $597 $237 $719 $475 $414

SAV-ATL-MIA $796 $463 Sold Out $591 $520 Sold Out

Table 4.16: CMIP and Post-CMIP Price Optimal Solutions for the Expanded Large
Network Example
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4.5 Conclusion

The extensive use of fare classes in the airline industry has created a computa-

tionally difficult problem when managing inventory to maximize revenue. In this

chapter, we introduce a model that eliminates the need for fare classes, which op-

timizes ticket prices and availability for maximum revenue, creating a manageable

non-linear mixed integer program. The model considers sensitivities to many ticket

attributes in a multinomial logit model, including price and path, aligning it with the

popular discrete choice modeling found in the current revenue management literature.

Compared against a static model, the Price-dynamic Choice-based Mixed Inte-

ger Program shows significant gains in revenue while maintaining computational effi-

ciency. In the first example, a parallel network, the PCMIP consistently outperformed

the CMIP when price and time of day were the only considerations of passenger choice.

Even under situations where the two models converged to vastly different solutions,

the PCMIP’s decisions dominated those of the CMIP, yielding a 13% increase in ex-

pected revenue. With added complexity to the network, the PCMIP continued to

outperform the CMIP, as seen in the second example. In this example we considered

a situation where the CMIP was given a better opportunity to perform with added

fare classes, highlighting that the PCMIP doesn’t require this added complexity to

yield better revenue results.

A large network example was also considered, in two different situations. First, the

product classification of Southwest Airlines was applied to the PCMIP and CMIP, and

solved for a hub-and-spoke network. The results showed that, even under a complex

network with realistic ticket attributes, the PCMIP maintains its edge against a

traditional static RM model. This edge continued to hold, despite added fare classes

for the static model, a common practice in today’s industry. Expanding on the large
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network, competition was added into the network by introducing direct connections

between some of the spoke cities. Additionally, a time of day preference was added

to the example to introduce a more realistic setting of passenger choice. Under these

new additions, the PCMIP continued to dominate the CMIP as well as a post-CMIP

price optimal solution, yielding an average increase of 28.9% compared to the CMIP

and 2.7% compared to the post-CMIP price optimal solution. These results highlight

not only the quality of the PCMIP, but also the importance of pricing in revenue

management.

The PCMIP has the freedom to select price bounded by passenger preference,

while determining the availability of each ticket type and is not bounded by static

price assumptions found in traditional fare class-based models. Developing an algo-

rithm that integrates the structure into a search method could lead to a tractable

formulation for airline use, while the current formulation is easily solvable for moder-

ately sized networks. As the progression of revenue management has slowed, incorpo-

rating price into controlling seat inventory provides an avenue for future development,

potentially leading to airline implementation of choice-based models that incorporate

pricing decisions alongside ticket availability.
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Chapter 5

CONCLUSION

Despite revenue management being researched for over 35 years, this dissertation pro-

vides impetus for continued research in the field of airline revenue management. The

need for easily implemented models that link important decisions such as ticket avail-

ability and price has created a dichotomous system between academic research and

industry practice. Centered around computationally complex models and assumption-

latent demand models, academic research in airline revenue management has become

highly theoretical with little practical use for the airlines. Industry models, on the

other hand, provide sub-optimal solutions, thanks to over-simplified demand assump-

tions and the use of quick-to-compute heuristics. This dissertation addresses this

gap, providing computationally efficient mathematical formulations and an easily im-

plementable dependent-demand framework that provides better solutions than tradi-

tional RM models.

The first model, introduced in Chapter 2, is a choice-based mixed integer program

(CMIP) that incorporates dependent demand through itinerary utilities. The CMIP

consistently outperformed industry standards such as the EMSR-b and network op-

timization techniques, as well as one of the more favored models, the Choice-based

Deterministic Linear Program (CDLP). Although the gains were smaller when com-

paring the CMIP to the CDLP, the reduction in problem size and overall complexity

allows for airlines to implement the CMIP, which is often a criticism of the CDLP.

The combination of revenue performance and the size of the formulation led to a

useful model for implementation, but turned the attention to the construction of the

demand model, itself.
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In Chapter 3, I formally define a multinomial logit (MNL) choice demand model

for airline use, taking into account everyday ticket attributes and price. Previous

revenue management models, including CMIP, failed to take into account the impor-

tance of price and other ticket attributes when generating the ticket utilities. The

equations defined in Chapter 3 remove static assumptions, such as price-independent

purchase utilities, allowing researchers to develop revenue management models that

can account for purchase behavior while optimizing ticket availability and price. This

MNL framework simplifies the process of modeling dependent demand, while main-

taining the complex nature of passenger purchase behavior. Once the framework had

been established, extending the CMIP from Chapter 2 into a price-sensitive model

followed naturally.

The final model, the price-dynamic choice-based mixed integer program (PCMIP),

integrated the demand model established in Chapter 3 into the CMIP. The PCMIP

proved to be quite effective, optimizing both ticket availability and price, eliminating

the need for complex fare class systems. The PCMIP outperformed all previous

models, including the CMIP, since it had the advantage of dynamically setting prices

in the deterministic environment. With more flexibility, the PCMIP was easily solved

on multiple examples, including real-world examples on networks larger than most

revenue management research, utilizing tickets characterized by Southwest Airlines

purchasing options. Despite being a mixed integer non-linear program, the compact

nature of the CMIP was leveraged in the PCMIP, leaving a compact formulation

with minimal integer solutions while optimizing prices. The union of price and ticket

availability optimization with a compact formulation resulted in a network revenue

management model with practical application.

The two models presented in this dissertation, along with the revenue management

dependent-demand framework, has the opportunity to drive revenue management re-
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search and industry application towards an agreement on proper methodologies. Im-

plementing basic assumptions and eliminating the use of independent demand mod-

els and fare classes, this dissertation provides the groundwork in industry-applicable

revenue management models, without having to generate computationally complex

network formulations or make restrictive assumptions. Advancing the field of revenue

management into one where academics and practitioners can agree on methodologies

and computational complexity should provide many years of advancement in the field

of network revenue management and airline operations optimization.
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APPENDIX A

RAW DATA

105



www.manaraa.com

Product Legs Class Fare Product Legs Class Fare

1 1 H 1000 12 1 L 500
2 2 H 400 13 2 L 200
3 3 H 400 14 3 L 200
4 4 H 300 15 4 L 150
5 5 H 300 16 5 L 150
6 6 H 500 17 6 L 250
7 7 H 500 18 7 L 250
8 {2,4} H 600 19 {2,4} L 300
9 {3,5} H 600 20 {3,5} L 300
10 {2,6} H 700 21 {2,6} L 350
11 {3,7} H 700 22 {3,7} L 350

Table A.1: Product Definitions for the Small Network Instance - Adapted from Liu
and van Ryzin (2008)

Segment O-D Consideration Set Preference Vector Utility of No Purchase λt
1 A-B {1,8,9,12,19,20} (10,8,8,6,4,4) 1 0.08
2 A-B {1,8,9,12,19,20} (1,2,2,8,10,10) 5 0.20
3 A-H {2,3,13,14} (10,10,5,5) 1 0.05
4 A-H {2,3,13,14} (2,2,10,10) 5 0.20
5 H-B {4,5,15,16} (10,10,5,5) 1 0.10
6 H-B {4,5,15,16} (2,2,10,8) 5 0.15
7 H-C {6,7,17,18} (10,8,5,5) 1 0.02
8 H-C {6,7,17,18} (2,2,10,8) 5 0.05
9 A-C {10,11,21,22} (10,8,5,5) 1 0.02
10 A-C {10,11,21,22} (2,2,10,10) 5 0.04

Table A.2: Segment Definitions for the Small Network Instance - Adapted from Liu
and van Ryzin (2008)
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Market Itinerary Arrival Rate Preference Vector No Purchase Utility

SATBOS SATDFW1DFWBOS1 0.002 (1, 2, 3) 4

SATSEA SATDFW1DFWSEA1 0.005 (2, 2, 4) 5

SEAABQ SEADFW1DFWABQ1 0.002 (3, 3, 3) 8

SEAAUS SEADFW1DFWAUS1 0.002 (4, 4, 5) 10

SEADCA SEADFW1DFWDCA1 0.005 (3, 5, 7) 11

SEAJFK SEADFW1DFWJFK1 0.007 (1, 2, 3) 8

SEASAT SEADFW1DFWSAT1 0.002 (2, 3, 8) 10

SEASFO SEADFW1DFWSFO1 0.002 (1, 1, 5) 9

SFOABQ SFODFW1DFWABQ1 0.002 (3, 4, 8) 9

SFOAUS SFODFW1DFWAUS1 0.002 (2, 2, 7) 9

SFODCA SFODFW1DFWDCA1 0.002 (1, 1, 4) 11

SFOORD SFODFW1DFWORD1 0.005 (1, 2, 3) 5

SFOSAT SFODFW1DFWSAT1 0.005 (1, 1, 2) 4

Single Itinerary Markets

Table A.3: Consideration Sets and Utility Values for the Single Itineraries in the
Large Network Example
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Market Preference Vector No Purchase Utility

ABQAUS ABQDFW1DFWAUS1 ABQDFW2DFWAUS2 0.037 0.012 (1, 2, 3, 4, 5, 6) 7

ABQBOS ABQDFW1DFWBOS1 ABQDFW2DFWBOS2 0.002 0.049 (2, 3, 4, 5, 6, 7) 8

ABQDCA ABQDFW1DFWDCA1 ABQDFW2DFWDCA2 0.002 0.007 (1, 3, 4, 5, 5, 6) 9

ABQDFW ABQDFW1 ABQDFW2 0.005 0.005 (2, 2, 3, 3, 4, 5) 7

ABQJFK ABQDFW1DFWJFK1 ABQDFW2DFWJFK2 0.01 0.01 (1, 1, 2, 3, 4, 7) 9

ABQORD ABQDFW1DFWORD1 ABQDFW2DFWORD2 0.012 0.002 (2, 2, 3, 5, 10, 11) 12

ABQSAT ABQDFW1DFWSAT1 ABQDFW2DFWSAT2 0.002 0.002 (1, 1, 2, 2, 3, 3) 4

ABQSEA ABQDFW1DFWSEA1 ABQDFW2DFWSEA2 0.005 0.007 (1, 1, 1, 2, 4, 5) 9

ABQSFO ABQDFW1DFWSFO1 ABQDFW2DFWSFO2 0.002 0.005 (1, 3, 3, 4, 5, 6) 6

AUSABQ AUSDFW1DFWABQ1 AUSDFW2DFWABQ2 0.007 0.002 (1, 1, 2, 3, 4, 5) 5

AUSBOS AUSDFW1DFWBOS1 AUSDFW2DFWBOS2 0.002 0.002 (1, 2, 3, 4, 5, 6) 7

AUSDCA AUSDFW1DFWDCA1 AUSDFW2DFWDCA2 0.002 0.005 (2, 3, 4, 5, 6, 7) 8

AUSDFW AUSDFW1 AUSDFW2 0.005 0.01 (1, 3, 4, 5, 5, 6) 9

AUSJFK AUSDFW1DFWJFK1 AUSDFW2DFWJFK2 0.005 0.005 (2, 2, 3, 3, 4, 5) 7

AUSORD AUSDFW1DFWORD1 AUSDFW2DFWORD2 0.002 0.002 (1, 1, 2, 3, 4, 7) 9

AUSSAT AUSDFW1DFWSAT1 AUSDFW2DFWSAT2 0.01 0.005 (2, 2, 3, 5, 10, 11) 12

AUSSEA AUSDFW1DFWSEA1 AUSDFW2DFWSEA2 0.002 0.005 (1, 1, 2, 2, 3, 3) 4

AUSSFO AUSDFW1DFWSFO1 AUSDFW2DFWSFO2 0.007 0.002 (1, 1, 1, 2, 4, 5) 9

BOSABQ BOSDFW1DFWABQ1 BOSDFW2DFWABQ2 0.005 0.002 (1, 3, 3, 4, 5, 6) 6

BOSAUS BOSDFW1DFWAUS1 BOSDFW2DFWAUS2 0.002 0.002 (1, 1, 2, 3, 4, 5) 5

BOSDFW BOSDFW1 BOSDFW2 0.002 0.005 (1, 2, 3, 4, 5, 6) 6

BOSJFK BOSDFW1DFWJFK1 BOSDFW2DFWJFK2 0.01 0.002 (1, 3, 4, 5, 5, 6) 9

BOSSAT BOSDFW1DFWSAT1 BOSDFW2DFWSAT2 0.002 0.002 (1, 2, 3, 4, 4, 5) 5

BOSSEA BOSDFW1DFWSEA1 BOSDFW2DFWSEA2 0.005 0.002 (1, 1, 2, 2, 3, 4) 4

DCAABQ DCADFW1DFWABQ1 DCADFW2DFWABQ2 0.002 0.005 (1, 3, 3, 4, 5, 6) 7

DCAAUS DCADFW1DFWAUS1 DCADFW2DFWAUS2 0.002 0.01 (1, 1, 2, 2, 3, 3) 5

DCAORD DCADFW1DFWORD1 DCADFW2DFWORD2 0.002 0.002 (1, 1, 4, 4, 6, 7) 8

DCASAT DCADFW1DFWSAT1 DCADFW2DFWSAT2 0.005 0.002 (1, 2, 3, 4, 4, 5) 6

DCASEA DCADFW1DFWSEA1 DCADFW2DFWSEA2 0.002 0.002 (1, 1, 3, 3, 4, 4) 5

DCASFO DCADFW1DFWSFO1 DCADFW2DFWSFO2 0.005 0.002 (1, 1, 1, 2, 4, 5) 7

DFWABQ DFWABQ1 DFWABQ2 0.002 0.005 (1, 2, 3, 3, 4, 5) 8

DFWAUS DFWAUS1 DFWAUS2 0.002 0.002 (1, 4, 4, 5, 8, 9) 10

DFWBOS DFWBOS1 DFWBOS2 0.005 0.005 (2, 2, 4, 5, 6, 6) 9

DFWJFK DFWJFK1 DFWJFK2 0.002 0.012 (1, 1, 3, 4, 4, 9) 9

DFWORD DFWORD1 DFWORD2 0.005 0.002 (1, 1, 1, 2, 3, 4) 5

DFWSAT DFWSAT1 DFWSAT2 0.002 0.007 (1, 2, 2, 3, 3, 4) 5

DFWSEA DFWSEA1 DFWSEA2 0.005 0.007 (1, 2, 2, 3, 6, 6) 10

DFWSFO DFWSFO1 DFWSFO2 0.01 0.005 (1, 3, 3, 5, 6, 6) 9

JFKABQ JFKDFW1DFWABQ1 JFKDFW2DFWABQ2 0.002 0.005 (1, 1, 3, 4, 5, 5) 9

JFKAUS JFKDFW1DFWAUS1 JFKDFW2DFWAUS2 0.005 0.01 (1, 3, 4, 7, 8, 9) 10

JFKBOS JFKDFW1DFWBOS1 JFKDFW2DFWBOS2 0.002 0.005 (2, 2, 5, 6, 6, 7) 9

JFKORD JFKDFW1DFWORD1 JFKDFW2DFWORD2 0.005 0.005 (1, 2, 3, 3, 4, 5) 7

JFKSAT JFKDFW1DFWSAT1 JFKDFW2DFWSAT2 0.002 0.005 (1, 2, 3, 4, 5, 5) 6

JFKSEA JFKDFW1DFWSEA1 JFKDFW2DFWSEA2 0.005 0.01 (1, 2, 2, 3, 4, 5) 5

ORDABQ ORDDFW1DFWABQ1 ORDDFW2DFWABQ2 0.002 0.005 (1, 2, 5, 5, 8, 9) 10

ORDAUS ORDDFW1DFWAUS1 ORDDFW2DFWAUS2 0.005 0.01 (1, 1, 2, 2, 3, 3) 4

ORDBOS ORDBOS1 ORDDFW1DFWBOS1 0.01 0.012 (1, 1, 5, 5, 8, 9) 10

ORDDCA ORDDFW1DFWDCA1 ORDDFW2DFWDCA2 0.002 0.005 (2, 2, 4, 4, 6, 6) 8

ORDDFW ORDDFW1 ORDDFW2 0.002 0.01 (1, 1, 3, 4, 5, 7) 8

ORDJFK ORDDFW1DFWJFK1 ORDDFW2DFWJFK2 0.007 0.005 (1, 4, 5, 5, 6, 6) 10

ORDSAT ORDDFW1DFWSAT1 ORDDFW2DFWSAT2 0.002 0.005 (1, 4, 4, 6, 10, 11) 12

ORDSEA ORDDFW1DFWSEA1 ORDSEA1 0.01 0.005 (1, 4, 3, 8, 5, 10) 11

ORDSFO ORDDFW1DFWSFO1 ORDDFW2DFWSFO2 0.01 0.002 (1, 2, 2, 3, 4, 4) 5

SATABQ SATDFW1DFWABQ1 SATDFW2DFWABQ2 0.005 0.002 (2, 2, 4, 5, 5, 6) 9

SATAUS SATDFW1DFWAUS1 SATDFW2DFWAUS2 0.002 0.01 (1, 4, 4, 9, 10, 11) 15

SATDCA SATDFW1DFWDCA1 SATDFW2DFWDCA2 0.005 0.007 (2, 3, 3, 4, 4, 9) 9

SATDFW SATDFW1 SATDFW2 0.002 0.005 (1, 1, 2, 2, 3, 3) 4

SATJFK SATDFW1DFWJFK1 SATDFW2DFWJFK2 0.007 0.002 (1, 1, 4, 4, 6, 7) 8

SATORD SATDFW1DFWORD1 SATDFW2DFWORD2 0.002 0.002 (3, 4, 8, 8, 10, 10) 15

SATSFO SATDFW1DFWSFO1 SATDFW2DFWSFO2 0.005 0.01 (1, 1, 4, 4, 9, 9) 10

SEABOS SEADFW1DFWBOS1 SEADFW2DFWBOS2 0.002 0.005 (1, 2, 2, 5, 5, 9) 10

SEADFW SEADFW1 SEADFW2 0.002 0.01 (1, 4, 4, 5, 9, 9) 4

SEAORD SEAORD1 SEADFW1DFWORD1 0.002 0.002 (1, 1, 2, 2, 4, 4) 3

SFODFW SFODFW1 SFODFW2 0.002 0.005 (1, 1, 3, 3, 4, 5) 2

SFOJFK SFODFW1DFWJFK1 SFOJFK1 0.005 0.002 (1, 1, 4, 5, 6, 7) 10

SFOSEA SFODFW1DFWSEA1 SFODFW2DFWSEA2 0.002 0.002 (1, 2, 3, 4, 5, 6) 7

Double Itinerary Markets

Itinerary Arrival Rate

Table A.4: Consideration Sets and Utility Values for the Double Itineraries in the
Large Network Example
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Market Preference Vector No Purchase Utility

BOSDCA BOSDCA1 BOSDFW1DFWDCA1 BOSDFW2DFWDCA2 0.002 0.005 0.002 (1, 1, 2, 2, 3, 3, 4, 4, 5) 7

BOSORD BOSORD1 BOSDFW1DFWORD1 BOSDFW2DFWORD2 0.005 0.002 0.012 (1, 2, 2, 3, 4, 5, 6, 6, 7) 7

BOSSFO BOSDFW1DFWSFO1 BOSDFW2DFWSFO2 BOSSFO1 0.002 0.002 0.005 (1, 2, 4, 4, 7, 8, 9, 9, 10) 11

DCABOS DCADFW1DFWBOS1 DCADFW2DFWBOS2 DCABOS1 0.024 0.027 0.049 (1, 1, 2, 4, 4, 5, 6, 6, 9) 9

DCADFW DCADFW1 DCADFW2 DCABOS1BOSDFW2 0.002 0.005 0.01 (2, 2, 2, 3, 4, 6, 7, 8, 9) 9

DCAJFK DCADFW1DFWJFK1 DCADFW2DFWJFK2 DCAJFK1 0.005 0.005 0.002 (1, 2, 3, 4, 4, 5, 6, 7, 8) 8

DFWDCA DFWDCA1 DFWDCA2 DFWBOS1BOSDCA1 0.002 0.01 0.017 (1, 3, 3, 6, 6, 7, 8, 9, 10) 12

JFKDCA JFKDFW1DFWDCA1 JFKDFW2DFWDCA2 JFKDCA1 0.005 0.005 0.002 (1, 2, 3, 4, 4, 5, 6, 7, 8) 8

JFKDFW JFKDFW1 JFKDFW2 JFKDCA1DCADFW2 0.002 0.005 0.002 (1, 2, 3, 4, 4, 5, 7, 7, 8) 8

JFKSFO JFKDFW1DFWSFO1 JFKDFW2DFWSFO2 JFKSFO1 0.002 0.005 0.002 (1, 3, 3, 4, 4, 6, 7, 8, 9) 9

SFOBOS SFOBOS1 SFODFW1DFWBOS1 SFODFW2DFWBOS2 0.002 0.005 0.007 (1, 1, 1, 5, 5, 5, 8, 8, 8) 3

Triple Itinerary Markets

Itinerary Arrival Rate

Table A.5: Consideration Sets and Utility Values for the Triple Itineraries in the
Large Network Example

Origin-Dest. Lower Static Upper
Product Path Class Bound Price Bound

1 A - C A $1000 $1200 ∞
2 A - B - C A $650 $800 ∞
3 A - B A $400 $500 ∞
4 B - C A $400 $500 ∞
5 A - C B $0 $800 $999
6 A - B - C B $0 $500 $649
7 A - B B $0 $300 $399
8 B - C B $0 $300 $399

Table A.6: Ticket Prices and Bounds for Small Network Example with Two Fare
Classes
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Market Arrival Rate (λj) No-purchase utility (vj)

ATLBOS 0.058 1
ATLLAX 0.058 1
ATLMIA 0.054 1
ATLSAV 0.046 1.5
BOSATL 0.058 1
BOSLAX 0.048 2
BOSMIA 0.044 1
BOSSAV 0.052 1
LAXATL 0.058 1
LAXBOS 0.048 1
LAXMIA 0.046 1.4
LAXSAV 0.053 1
MIAATL 0.054 1.2
MIABOS 0.044 1
MIALAX 0.046 1.5
MIASAV 0.040 1
SAVATL 0.046 2
SAVBOS 0.052 1
SAVLAX 0.053 1.1

Table A.7: Arrival Rates and No-purchase Utilities for Large Network Example

Itinerary Business Select Anytime Wanna Get Away

ATL-BOS $379-$1000 $250-$378 $0-$249
ATL-LAX $445-$1000 $366-$444 $0-$365
ATL-MIA $264-$1000 $190-$263 $0-$262
ATL-SAV $369-$1000 $168-$368 $0-$167
BOS-ATL $379-$1000 $250-$378 $0-$249

BOS-ATL-LAX $616-$1500 $500-$615 $0-$499
BOS-ATL-MIA $471-$1000 $338-$470 $0-$337
BOS-ATL-SAV $416-$1000 $266-$415 $0-$265

LAX-ATL $445-$1000 $366-$444 $0-$365
LAX-ATL-BOS $616-$1500 $500-$615 $0-$499
LAX-ATL-MIA $836-$1500 $411-$835 $0-$410
LAX-ATL-SAV $719-$1500 $475-$718 $0-$474

MIA-ATL $264-$1000 $190-$263 $0-$262
MIA-ATL-BOS $471-$1000 $338-$470 $0-$337
MIA-ATL-LAX $836-$1500 $411-$835 $0-$410
MIA-ATL-SAV $591-$1000 $336-$590 $0-$335

SAV-ATL $369-$1000 $168-$368 $0-$167
SAV-ATL-BOS $416-$1000 $266-$415 $0-$265
SAV-ATL-LAX $719-$1500 $475-$718 $0-$474
SAV-ATL-MIA $591-$1000 $336-$590 $0-$335

Table A.8: Bounds on Prices for Large Network Example
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Itinerary
PCMIP

Business
Anytime

Wanna
Select Get Away

ATL-BOS $503 Sold Out Sold Out
ATL-LAX $457 $444 Sold Out
ATL-MIA $472 Sold Out Sold Out
ATL-SAV $454 Sold Out Sold Out

BOS-ATL $540 Sold Out Sold Out
BOS-LAX $776 $651 $247

BOS-ATL-LAX $616 $510 Sold Out
BOS-ATL-MIA $538 Sold Out Sold Out
BOS-ATL-SAV $547 Sold Out Sold Out

LAX-ATL $497 $444 Sold Out
LAX-BOS $776 $651 $296
LAX-MIA $991 $601 $295

LAX-ATL-BOS $616 $558 Sold Out
LAX-ATL-MIA $836 $442 Sold Out
LAX-ATL-SAV $719 $475 $322

MIA-ATL $513 Sold Out Sold Out
MIA-LAX $991 $601 $294

MIA-ATL-BOS $553 $470 Sold Out
MIA-ATL-LAX $836 $425 Sold Out
MIA-ATL-SAV $591 $448 Sold Out

SAV-ATL $512 Sold Out Sold Out
SAV-ATL-BOS $513 Sold Out Sold Out
SAV-ATL-LAX $719 $475 Sold Out
SAV-ATL-MIA $591 $454 Sold Out

Table A.9: PCMIP Solution for the Expanded Large Network Example
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